Advertisement

Evaluation of the Volatile Organic Compounds Released from Peripheral Blood Mononuclear Cells and THP1 Cells Under Normal and Proinflammatory Conditions

  • A. Forleo
  • S. Capone
  • V. Longo
  • F. Casino
  • A. V. Radogna
  • P. Siciliano
  • M. Massaro
  • E. Scoditti
  • N. Calabriso
  • MA. Carluccio
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 457)

Abstract

Leukemia is a group of cancers that usually begin in the bone marrow and result in high numbers of abnormal and dysfunctional white blood cells. Many studies were carried out to investigate metabolism of these cells. Metabolome analysis has been successfully applied to leukemia disease and emerged as a powerful tool for obtaining information about the biological processes that occur in organisms, and as a useful platform for discovering new clinical biomarkers and make diagnosis of disease using different biofluids. Whatever has not been investigated in leukemic cells is volatile metabolic signature that in recent literature is called “volatilome”. Volatile organic compounds (VOCs) from the headspace of cultured THP1 cells and normal human peripheral blood mononuclear cells, were collected by headspace solid-phase microextraction (HS-SPME) and analyzed by gas chromatography combined with mass spectrometry (GC–MS), thus defining a volatile metabolomics signature. Styrene, cyclohexanol, cyclohexanone, 1-hexanol-2-ethyl, cyclohexane, 1,1’-(1,2-dimethyl-1,2-ethanediyl)bis-, benzene, 1,3-bis(1,1-dimethylethyl)- were present in higher amount in cultured THP1 cell than in PBMC, while 2-butanone has an opposite trend. Cell stimulation with lipopolysaccharide affected normal cells, but not leukemic cells. The establishment of the volatile fingerprint of THP1 cell lines presents a powerful approach to find endogenous VOCs that could be used to improve the diagnostic tools and explore the associated metabolomic pathways.

Keywords

SPME-GC/MS THP1 Cell lines VOCs  

References

  1. 1.
    Buszewski, B., Kesy, M., Ligor, T., Amann, A.: Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr. 21(6), 553–566 (2007 Jun) ReviewGoogle Scholar
  2. 2.
    Pereira, J., Porto-Figueira, P., Cavaco, C., Taunk, K., Rapole, S., Dhakne, R., Nagarajaram, H., Câmara, J.S.: Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites. 5(1), 3–55 (2015 Jan 9). doi: 10.3390/metabo5010003. Review
  3. 3.
    Huang, Y., Li, Y., Luo, Z., Duan, Y.: Investigation of biomarkers for discriminating breast cancer cell lines from normal mammary cell lines based on VOCs analysis and metabolomics. RSC Adv. 6, 41816–41824 (2016)CrossRefGoogle Scholar
  4. 4.
    Suzuki, M., Nishiumi, S., Matsubara, A., Azuma, T., Yoshida, M.: Metabolome analysis for discovering biomarkers of gastroenterological cancer. J Chromatogr B Analyt Technol Biomed Life Sci. 966, 59–69 (2014 Sep 1). doi: 10.1016/j.jchromb.2014.02.042. Epub 2014 Mar 1. Review
  5. 5.
    Amal, H., Ding, L., Liu, B.B., Tisch, U., Xu, Z.Q., Shi, D.Y., Zhao, Y., Chen, J., Sun, R.X., Liu, H., Ye, S.L., Tang, Z.Y., Haick, H.: The scent fingerprint of hepatocarcinoma: in-vitro metastasis prediction with volatile organic compounds (VOCs). Int J Nanomedicine. 7, 4135–4146 (2012). doi: 10.2147/IJN.S32680 Google Scholar
  6. 6.
    Hakim, M., Broza, Y.Y., Barash, O., Peled, N., Phillips, M., Amann, A., Haick, H.: Volatile organic compounds of lung cancer and possible biochemical pathways. Chem Rev. 112(11), 5949–5966 (2012 Nov 14). doi: 10.1021/cr300174a
  7. 7.
    Filipiak, W., Sponring, A., Mikoviny, T., Ager, C., Schubert, J., Miekisch, W., Amann, A., Troppmair, J.: Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int. 8, 17 (2008 Nov 24). doi: 10.1186/1475-2867-8-17
  8. 8.
    Hanai, Y., Shimono, K., Oka, H., Baba, Y., Yamazaki, K., Beauchamp, GK.: Analysis of volatile organic compounds released from human lung cancer cells and from the urine of tumor-bearing mice. Cancer Cell Int. 12(1), 7 (2012 Feb 24). doi: 10.1186/1475-2867-12-7
  9. 9.
    Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 13(2), 85–94 (2001 Feb) ReviewGoogle Scholar
  10. 10.
    Silva, C.L., Passos, M., Câmara, J.S.: Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br J Cancer. 105(12) 1894–1904 (2011 Dec 6). doi: 10.1038/bjc.2011.437
  11. 11.
    Tang, H., Lu, Y., Zhang, L., Wu, Z., Hou, X., Xia, H.: Determination of volatile organic compounds exhaled by cell lines derived from hematological malignancies. Biosci Rep. 2017 May 15. pii: BSR20170106. doi: 10.1042/BSR20170106
  12. 12.
    Filipiak, W., Sponring, A., Mikoviny, T., Ager, C., Schubert, J., Miekisch, W., Amann, A., Troppmair, J.: Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int. 8, 17 (2008 Nov 24). doi: 10.1186/1475-2867-8-17
  13. 13.
    Liu, H., Li, C., Wang, H., Huang, Z., Zhang, P., Pan, Z., Wang, L.: Characterization of volatile organic metabolites in lung cancer pleural effusions by SPME–GC/MS combined with an untargeted metabolomic method. Chromatographia 77, 1379 (2014). doi: 10.1007/s10337-014-2720-y CrossRefGoogle Scholar
  14. 14.
    Sponring, A., Filipiak, W., Mikoviny, T., Ager, C., Schubert, J., Miekisch, W., Amann, A., Troppmair, J.: Release of volatile organic compounds from the lung cancer cell line NCI-H2087 in vitro. Anticancer Res. 29(1), 419–426 (2009 Jan)Google Scholar
  15. 15.
    Silva, C.L., Perestrelo, R., Silva, P., Tomás, H., Câmara, J.S.: Volatile metabolomics signature of human breast cancer cell lines. Sci Rep. 7, 43969 (2017 Mar 3). doi: 10.1038/srep43969
  16. 16.
    Peled, N., Barash, O., Tisch, U., Ionescu, R., Broza, Y.Y., Ilouze, M., Mattei, J., Bunn, P.A. Jr, Hirsch, F.R., Haick, H.: Volatile fingerprints of cancer specific genetic mutations. Nanomedicine. 9(6), 758–766 (2013 Aug). doi: 10.1016/j.nano.2013.01.008
  17. 17.
    Davies, M.P., Barash, O., Jeries, R., Peled, N., Ilouze, M., Hyde, R., Marcus, M.W., Field, J.K., Haick, H.: Unique volatolomic signatures of TP53 and KRAS in lung cells. Br J Cancer. 111(6), 1213–1221 (2014 Sep 9). doi: 10.1038/bjc.2014.411
  18. 18.
    Amann, A., Corradi, M., Mazzone, P., Mutti, A.: Lung cancer biomarkers in exhaled breath. Expert Rev. Mol. Diagn. 11, 207–217 (2011)Google Scholar
  19. 19.
    Amal, H., Shi, D.Y., Ionescu, R., Zhang, W., Hua, Q.L., Pan, Y.Y., Tao, L., Liu, H., Haick, H.: Assessment of ovarian cancer conditions from exhaled breath. Int J Cancer. 136(6), E614–E622 (2015 Mar 15). doi: 10.1002/ijc.29166
  20. 20.
    Wang, C., Sun, B., Guo, L., Wang, X., Ke, C., Liu, S., Zhao, W., Luo, S., Guo, Z., Zhang, Y., Xu, G., Li, E.: Volatile organic metabolites identify patients with breast cancer, cyclomastopathy, and mammary gland fibroma. Sci Rep. 4, 5383 (2014 Jun 20). doi: 10.1038/srep05383
  21. 21.
    Phillips, M., Cataneo, R.N., Ditkoff, B.A., Fisher, P., Greenberg, J., Gunawardena, R., Kwon, C.S., Rahbari-Oskoui, F., Wong, C.: Volatile markers of breast cancer in the breath. Breast J. 9(3), 184–191 (2003 May-Jun)Google Scholar
  22. 22.
    Phillips, M., Cataneo, R.N., Ditkoff, B.A., Fisher, P., Greenberg, J., Gunawardena, R., Kwon, C.S., Tietje, O., Wong, C.: Prediction of breast cancer using volatile biomarkers in the breath. Breast Cancer Res Treat. 99(1), 19–21 (2006 Sep)Google Scholar
  23. 23.
    Ulanowska, A., Kowalkowski, T., Trawińska, E., Buszewski, B.: The application of statistical methods using VOCs to identify patients with lung cancer. J Breath Res. 5(4), 046008 (2011 Dec). doi: 10.1088/1752-7155/5/4/046008
  24. 24.
    Tang, H., Lu, Y., Zhang, L., Wu, Z., Hou, X., Xia, H.: Determination of volatile organic compounds exhaled by cell lines derived from hematological malignancies. Biosci Rep. (2017 May 15). pii: BSR20170106. doi: 10.1042/BSR20170106
  25. 25.
    Schildberger, A., Rossmanith, E., Eichhorn, T., Strassl, K., Weber, V.: Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide. Mediators Inflamm. 2013, 697972 (2013). doi: 10.1155/2013/697972 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. Forleo
    • 1
  • S. Capone
    • 1
  • V. Longo
    • 1
  • F. Casino
    • 1
  • A. V. Radogna
    • 1
  • P. Siciliano
    • 1
  • M. Massaro
    • 2
  • E. Scoditti
    • 2
  • N. Calabriso
    • 2
  • MA. Carluccio
    • 2
  1. 1.Institute for Microelectronics and MicrosystemsNational Research Council of ItalyLecceItaly
  2. 2.Institute of Clinical PhysiologyNational Research Council of ItalyLecceItaly

Personalised recommendations