Radar-Based Fall Detection Using Deep Machine Learning: System Configuration and Performance

  • Giovanni Diraco
  • Alessandro Leone
  • Pietro Siciliano
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 457)

Abstract

Automatic fall-detection systems, saving time for the arrival of medical assistance, have the potential to reduce the risk of adverse health consequences. Fall-detection technologies are under continuous improvements in terms of both acceptability and performance. Ultra-wideband radar sensing is an interesting technology able to provide rich information in a privacy-preserving way, and thus well acceptable by end-users. In this study, a radar sensor compound of two ultra-wideband monostatic units in two different configurations (i.e., vertical and horizontal baseline) has been investigated in order to provide sensor data from which robust features can be automatically extracted by using deep learning. The achieved results show the potential of the suggested sensor data representation and the superiority of the double-unit vertical-baseline configuration. Indeed, while the horizontal configuration allows to discriminate the body’s position around the radar system, the vertical one discriminates the body’s height that is more important for fall detection.

Keywords

Fall detection Ultra-wideband radar Micro-Doppler Deep learning GPU computing 

References

  1. 1.
    Bloch, F.: Critical falls: why remaining on the ground after a fall can be dangerous, whatever the fall. J. Am. Geriatr. Soc. 60, 1375–1376 (2012)CrossRefGoogle Scholar
  2. 2.
    Siciliano, P., Leone, A., Diraco, G., Distante, C., Malfatti, M., Gonzo, L., Grassi, M., Lombardi, A., Rescio, G., Malcovati, P.: A networked multisensor system for ambient assisted living application. In: IWASI, IEEE, pp. 139–143 (2009)Google Scholar
  3. 3.
    Diraco, G., Leone, A., Siciliano, P.: In-home hierarchical posture classification with a time-of-flight 3D sensor. Gait & Posture 39(1), 182–187 (2014)CrossRefGoogle Scholar
  4. 4.
    Diraco, G., Leone, A., Siciliano, P.: People occupancy detection and profiling with 3D depth sensors for building energy management. Energy Build. 92, 246–266 (2015)CrossRefGoogle Scholar
  5. 5.
    Diraco, G., Leone, A., Siciliano, P., Grassi, M., Malcovati, P.: A multi-sensor system for fall detection in ambient assisted living contexts. In: SENSORNETS, pp. 213–219 (2012)Google Scholar
  6. 6.
    Nguyen, C., Han, J.: Time-Domain Ultra-Wideband Radar, Sensor and Components: Theory, Analysis and Design. Springer Science & Business Media (2014)Google Scholar
  7. 7.
    Amin, M.G., Zhang, Y.D., Ahmad, F., Ho, K.D.: Radar signal processing for elderly fall detection: the future for in-home monitoring. Sig. Proc. Mag. 33(2), 71–80 (2016)CrossRefGoogle Scholar
  8. 8.
    Sahinoglu, Z., Gezici, S., Guvenc, I.: Ultra-wideband positioning systems: theoretical limits. In: Ranging Algorithms, and Protocols. Cambridge University Press, Cambridge (2008)Google Scholar
  9. 9.
    Wu, Q., Zhang, Y., Tao, W., Amin, M.: Radar-based fall detection based on doppler time frequency signatures for assisted living. IET Radar Sonar Navig. 9(2), 164–172 (2015)CrossRefGoogle Scholar
  10. 10.
    Noury, N., Rumeau, P., Bourke, A., OLaighin, G., Lundy, J.: A proposal for the classification and evaluation of fall detectors. Irbm 29(6), 340–349 (2008)Google Scholar
  11. 11.
    Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res., 625–660 (2010)Google Scholar
  12. 12.
    TIME DOMAIN (2017, May 27), PulsON® P410 radar kit, [Online]. Available: http://www.timedomain.com
  13. 13.
    Vlaeyen, E., Deschodt, M., Debard, G., Dejaeger, E., Boonen, S., Goedemé, T., Vanrumste, B., Milisen, K.: Fall incidents unraveled: a series of 26 video-based real-life fall events in three frail older persons. BMC Geriatr. 13, 103 (2013)CrossRefGoogle Scholar
  14. 14.
    Robinovitch, S.N., Feldman, F., Yang, Y., Schonnop, R., Leung, P.M., Sarraf, T., Sims-Gould, J., Loughin, M.: Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. The Lancet 381(9860), 47–54 (2013)CrossRefGoogle Scholar
  15. 15.
    Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU Math Expression Compiler. In: Proceedings of the Python for Scientific Computing Conference (2010)Google Scholar
  16. 16.
    Diraco, G., Leone, A., Siciliano, P.: Radar sensing technology for fall detection under near real-life conditions. In: Proceedings of TechAAL, London, UK, 5–6 (2016)Google Scholar
  17. 17.
    Jokanovic, B., Amin, M., Ahmad, F.: Radar fall motion detection using deep learning. In: RadarConf, IEEE, 1–6 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Giovanni Diraco
    • 1
  • Alessandro Leone
    • 1
  • Pietro Siciliano
    • 1
  1. 1.National Research Council of ItalyInstitute for Microelectronics and MicrosystemsLecceItaly

Personalised recommendations