Advertisement

Heat Sink Free Wearable Thermoelectric System with Low Startup Voltage, High Efficiency DC–DC Converter

  • L. Francioso
  • C. De Pascali
  • C. Veri
  • M. Pasca
  • S. D’amico
  • F. Casino
  • P. Siciliano
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 457)

Abstract

Thermoelectric energy harvesting represents a promising approach to partially or totally supply ultra-low power wearable devices, by using the human body heat as energy source. Few works were published on wearable and truly ready-to-use TEGs. The work presented in this contribute proposes development and assessment of operational properties of a system composed by a flexible heat sink free thermoelectric generator (TEG) and a DC–DC ASIC converter with 80 mV start-up input voltage. For a first functional investigation, a prototype of 45 thermocouples into a footprint area of about 2.2 × 10−3 m2 was fabricated and tested to evaluate its thermoelectric performance stand-alone and coupled with the DC–DC converter. A mean Seebeck coefficient of about 60 µV/K for pn couple was calculated from experimental data, and a power of about 27 nW was measured at 10 K on matched load of about 6.8 kΩ. A temperature difference of about 1.8 ℃ was achieved between the junctions in working conditions next to those typical of human body wearing in indoors.

Keywords

Wearable thermoelectric generator Flexible thermoelectric Wearable power source ASIC converter  

References

  1. 1.
    Francioso, L., De Pascali, C., Farella, I., Martucci, C., Cretì, P., Siciliano, P., Perrone, A: Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. J. Power Sources 196(6), 3239–3243 (2011). doi: 10.1016/j.jpowsour.2010.11.081
  2. 2.
    Francioso, L., De Pascali, C., Farella, I., Martucci, C., Cretì, P., Siciliano, P.: Polyimide/PDMS flexible thermoelectric generator for Ambient Assisted Living applications. Proc. SPIE Int. Soc. Opt. Eng. 8066, 80662H (2011). doi: 10.1117/12.887836
  3. 3.
    Francioso, L., De Pascali, C., Bartali, R., Morganti, E., Lorenzelli, L., Siciliano, P., Laidani, N.: PDMS/kapton interface plasma treatment effects on the polymeric package for a wearable thermoelectric generator. ACS App. Mater. Interfaces 5(14), 6586–6590 (2013). doi: 10.1021/am401222p
  4. 4.
    Francioso, L., De Pascali, C., Siciliano, P., De Risi, A., D’Amico, S., Veri, C., Pasca, M: Thin film technology flexible thermoelectric generator and dedicated ASIC for energy harvesting applications. In: Proceedings of the 2013 5th IEEE International Workshop on Advances in Sensors and Interfaces, IWASI 2013, 6576100, pp. 104–107 (2013). doi: 10.1109/IWASI.2013.6576100
  5. 5.
    Francioso, L., De Pascali, C., Siciliano P.: Experimental assessment of thermoelectric generator package properties: simulated results validation and real gradient capabilities. Energy. 86, 300–310 (2015). doi: 10.1016/j.energy.2015.04.041
  6. 6.
    Carmo, J.P., Goncalves, L.M., Wolffenbuttel, R.F., Correia, J.H.: A planar thermoelectric power generator for integration in wearable microsystems. Sens. Actuators A 161(1–2), 199–204 (2010). doi: 10.1016/j.sna.2010.05.010 CrossRefGoogle Scholar
  7. 7.
    Kao, P.H., Shih, P.J., Dai, C.L., Liu, M.C.: Fabrication and characterization of CMOS-MEMS thermoelectric micro generators. Sensors 10, 1315–1325 (2010). doi: 10.3390/s100201315 CrossRefGoogle Scholar
  8. 8.
    Yuan, Z., Ziouche, K., Bougrioua, Z., Lejeune, P., Lasri, T., Leclercq, D.: A planar micro thermoelectric generator with high thermal resistance. Sens. Actuators A 221, 67–76 (2015). doi: 10.1016/j.sna.2014.10.026 CrossRefGoogle Scholar
  9. 9.
    Jin Bae, E., Hun Kang, Y., Jang, KS., Yun Cho, S.: Enhancement of thermoelectric properties of PEDOT: PSS and Tellurium-PEDOT: PSS hybrid composites by simple chemical treatment. Scientific Reports 6, Article number: 18805 (2016). doi: 10.1038/srep18805
  10. 10.
    Leonov, V., Gyselinckx, B., Van Hoof, C., Torfs, T., Yazicioglu, RF., Vullers, RJM., Fiorini, P., Wearable self-powered wireless devices with thermoelectric energy scavengers. In: Proceedings of Smart Systems Integration, Barcelona, Apr. 9–10, pp. 217–224 (2008). doi: 10.1109/BSN.2009.10
  11. 11.
    Leonov, V., Torfs, T., Van Hoof, C., Vullers, R.J.M.: Smart wireless sensors integrated in clothing: an electrocardiography system in a shirt powered using human body heat. Sens. Transducers J. 107, 165–176 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • L. Francioso
    • 1
  • C. De Pascali
    • 1
  • C. Veri
    • 2
  • M. Pasca
    • 2
  • S. D’amico
    • 2
  • F. Casino
    • 1
  • P. Siciliano
    • 1
  1. 1.Institute for Microelectronics and Microsystems—CNR–IMMLecceItaly
  2. 2.Department of Innovation EngineeringUniversity of SalentoLecceItaly

Personalised recommendations