Advertisement

Enhancement in PDMS-Based Microfluidic Network for On-Chip Thermal Treatment of Biomolecules

  • G. Petrucci
  • N. Lovecchio
  • M. Nardecchia
  • C. Parrillo
  • F. Costantini
  • A. Nascetti
  • G. de Cesare
  • D. Caputo
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 457)

Abstract

In this paper, we present an improved microfluidic network based on polydimethylsiloxane (PDMS) and thin film heaters for thermal treatment of biomolecules in lab-on-chip systems. It relies on the series connection of two thermally actuated valves, at both inlet and outlet of the network, in order to reduce leakage of sample when its process temperature approaches 100 °C. The spatial arrangement of valves and microfluidic channels in between has been optimized using COMSOL Multiphysics, through the investigation of the system thermal behavior. Taking into account the simulation results, the geometries of the heaters have been defined following standard microelectronic technologies and the microfluidic network has been fabricated by soft lithography. The experiments demonstrate that with the proposed configuration the liquid evaporation is strongly reduced since more than 80% of the sample is recovered after a practical thermal treatment experiment.

Keywords

Lab-on-chip Thin film heater Thermally actuated valve Polydimethylsiloxane (PDMS) 

Notes

Acknowledgements

Authors thank the Italian Ministry of Education, University and Research (MIUR) through University Research Project 2015 (prot. C26H15J3PX) for the financial support.

References

  1. 1.
    Abgrall, P., Gué, A.M.: Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J. Micromech. Microeng. 17, R15–R49 (2007)CrossRefGoogle Scholar
  2. 2.
    Lovecchio, N., G. Petrucci, G., Caputo, D., Alameddine, S., Carpentiero, M., Martini, L., Parisi, E., de Cesare, G., Nascetti, A.: Thermal control system based on thin film heaters and amorphous silicon diodes, In Advances in Sensors and Interfaces (IWASI), 6th IEEE International Workshop on, pp. 277–282 (2015)Google Scholar
  3. 3.
    Caputo, D., de Cesare, G., Nardini, M., Nascetti, A., Scipinotti, R.: Monitoring of temperature distribution in a thin film heater by an array of a-Si: H temperature sensors. IEEE Sens. J. 12(5), 1209–1213 (2012)CrossRefGoogle Scholar
  4. 4.
    Parida, M., Sammarangaiah, S., Kumar Dash, P., Rao, P.V.L., Morita, K.: Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspective in clinical diagnosis of infectious deseases. Rev. Med. Virol. 18, 407–421 (2008)CrossRefGoogle Scholar
  5. 5.
    Wu, J., Cao, W., Wen, W., Chang, D.C., Sheng, P.: Polydimethylsiloxane microfluidic chip with integrated microheater and thermal sensor. Biomicrofluidics 3(1), 012005 (2009)CrossRefGoogle Scholar
  6. 6.
    Caputo, D., Ceccarelli, M., de Cesare, G., Nascetti, A., Scipinotti, R.: Lab-on-glass system for DNA analysis using thin and thick film technologies. Proceedings of Mat. Res. Soc. Symposia 1191, 53–58 (2009)Google Scholar
  7. 7.
    Tewhey, R., Warner, J.B., Nakano, M.M., et al.: Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nature biotechnology 27(11), 1025–1031 (2009)CrossRefGoogle Scholar
  8. 8.
    Zec, H., O’Keefe, C., Ma, P., Wang, T. H.: Ultra-thin, evaporation-resistent PDMS devices for absolute quantification of DNA using digital PCR, Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 18th IEEE International Conference on Transducers, pp. 536–539, (2015)Google Scholar
  9. 9.
    Zec, H., Glover, C. J., Hsieh, W., Liu, L., O’Keefe, C., Wang, T. H.: Method for controlling water evaporation in pdms-based microfluidic devices, 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 1743–1745, (2014)Google Scholar
  10. 10.
    Polini, A., Mele, E., Sciancalepore, A.G., Girardo, S., Biasco, A., Camposeo, A., Cingolani, R., Weitz, D.A., Pisignano, D.: Reduction of water evaporation in polymerase chain reaction microfluidic devices based on oscillating-flow. Biomicrofluidics 4, 036502 (2010)CrossRefGoogle Scholar
  11. 11.
    Petrucci, G., Caputo, D., Lovecchio, N., Costantini, F., Legnini, I., Bozzoni, I., Nascetti, A., de Cesare, G.: Multifunctional System-on-Glass for Lab-on-Chip Applications. Biosens. Bioelectron. 93, 315–321 (2017)CrossRefGoogle Scholar
  12. 12.
    Zahra, A., Scipinotti, R., Caputo, D., Nascetti, A., de Cesare, G.: Design and fabrication of microfluidics system integrated with temperature actuated microvalve. Sensors and Actuators A: Physical 236(1), 206–213 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • G. Petrucci
    • 1
  • N. Lovecchio
    • 1
  • M. Nardecchia
    • 1
    • 2
  • C. Parrillo
    • 1
  • F. Costantini
    • 2
    • 3
  • A. Nascetti
    • 2
  • G. de Cesare
    • 1
  • D. Caputo
    • 1
  1. 1.D.I.E.TSapienza University of RomeRomeItaly
  2. 2.S.a.ESapienza University of RomeRomeItaly
  3. 3.Department of ChemistrySapienza University of RomeRomeItaly

Personalised recommendations