A New Resonant Air Humidity Sensor: First Experimental Results

  • Nicola A. Lamberti
  • Monica La Mura
  • Pasquale D’Uva
  • Nicola Greco
  • Valerio Apuzzo
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 457)


In this paper, first experimental results obtained on a new resonant humidity sensor are presented. The resonant sensor is made of a piezoelectric material coated with a hygroscopic material, therefore able to adsorb the water molecules contained in the surrounding air. The adsorbed water increases the sensitive layer mass, thus varying the sensor resonance frequency. The sensor is included in an electronic oscillator that tunes its oscillating frequency with the sensor resonance frequency. The output voltage signal is sampled and processed by a microcontroller in order to measure the resonance frequency. By relating the device resonance frequency to the amount of water adsorbed by the polymeric layer, an accurate air humidity measurement can be obtained.


Humidity sensor Resonant sensor Oscillating circuit Resonance frequency measurement Humidity measurement system 


  1. 1.
    Yamazoe, N., Shimizu, Y.: Humidity sensors: principles and applications. Sens. Actuators 10(3-4), 379–398 (1986)CrossRefGoogle Scholar
  2. 2.
    Kulwicki, B.M.: Humidity sensors. J. Am. Ceram. Soc. 74(4), 697–708 (1991)CrossRefGoogle Scholar
  3. 3.
    Fraden, J.: Handbook of Modern Sensors, vol. 3. Springer, New York (2010)CrossRefGoogle Scholar
  4. 4.
    Chen, Z., Chi, L.: Humidity sensors: a review of materials and mechanisms. Sens. lett. 3(4), 274–295 (2005)CrossRefGoogle Scholar
  5. 5.
    Farahani, H., Wagiran, R., Hamidon, M.N.: Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5), 7881–7939 (2014)Google Scholar
  6. 6.
    Aqeel-ur-Rehman, J., Abbasi, A.Z., Islam, N., Shaikh, Z.A.: A review of wireless sensors and networks’ applications in agriculture. Comput. Stan. Interfaces 36(2), 263–270 (2014)Google Scholar
  7. 7.
    Kang, J.: Integrated comfort sensing system for indoor activity. In: SICE-ICASE International Joint Conference, Busan, pp. 5868–5872 (2006)Google Scholar
  8. 8.
    La Gennusa, M., Rizzo, G., Scaccianoce, G., Nicoletti, F.: Control of indoor environments in heritage buildings: experimental measurements in an old Italian museum and proposal of a methodology. J. Cult. Heritage 6(2), 147–155 (2005)Google Scholar
  9. 9.
    Staniforth, S., Hayes, B., Bullock, L.: Appropriate technologies for relative humidity control for museum collections housed in historic buildings. Stud. Conserv. 39(sup2), 123–128 (1994)Google Scholar
  10. 10.
    Nomura, T., et al.: SAW humidity sensor using dielectric hygroscopic polymer film. In: Ultrasonics Symposium, Proceedings, IEEE. Vol. 1. IEEE (1994)Google Scholar
  11. 11.
    Penza, M., Cassano, G.: Relative humidity sensing by PVA-coated dual resonator SAW oscillator. Sens. Actuators B: Chem. 68(1), 300–306 (2000)CrossRefGoogle Scholar
  12. 12.
    Qiu, X., et al.: Experiment and theoretical analysis of relative humidity sensor based on film bulk acoustic-wave resonator. Sens. Actuators B: Chem. 147(2) 381–384 (2010)Google Scholar
  13. 13.
    Morten, B., De Cicco, G., Prudenziati, M.: A thick-film resonant sensor for humidity measurements. Sens. Actuators A 37, 337–342 (1993)CrossRefGoogle Scholar
  14. 14.
    Schroth, A., Sager, K., Gerlach, G., Häberli, A., Boltshauser, T., Baltes, H.: A resonant poliyimide-based humidity sensor. Sens. Actuators B: Chem. 34(1), 301–304 (1996)CrossRefGoogle Scholar
  15. 15.
    Pascal-Delannoy, F., Sorli, B., Boyer, A.: Quartz crystal microbalance (QCM) used as humidity sensor. Sens. Actuators A 84(3), 285–291 (2000)CrossRefGoogle Scholar
  16. 16.
    Zhang, Y., Ke, Y., Rongli, X., Jiang, D., Luo, L., Zhu, Z.: Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor. Sens. Actuators A 120(1), 142–146 (2005)CrossRefGoogle Scholar
  17. 17.
    Weili, H., Chen, S., Zhou, B., Liu, L., Ding, B., Wang, H.: Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with bacterial cellulose membrane. Sens. Actuators B: Chem. 159(1), 301–306 (2011)CrossRefGoogle Scholar
  18. 18.
    Zhou, X., et al.: Humidity sensor based on quartz tuning fork coated with sol–gel-derived nanocrystalline zinc oxide thin film. Sens. Actuators B: Chem. 123(1), 299–305 (2007)Google Scholar
  19. 19.
    Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik A Hadrons and Nuclei 155(2), 206–222 (1959)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nicola A. Lamberti
    • 1
  • Monica La Mura
    • 1
  • Pasquale D’Uva
    • 1
  • Nicola Greco
    • 1
  • Valerio Apuzzo
    • 1
  1. 1.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly

Personalised recommendations