Advertisement

Electrocatalytic Activity of α-MoO3 Plates Synthesized Through Resistive Heating Route

  • Emanuela Filippo
  • Daniela Chirizzi
  • Francesca Baldassarre
  • Marco Tepore
  • Maria Rachele Guascito
  • Antonio Tepore
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 457)

Abstract

Characterization and electrochemical application of α-MoO3 hierarchical plates achieved through direct resistive heating of molybdenum foils, at ambient pressure and in absence of templates or catalysts, has been reported. The plates with an orthorhombic single-crystalline structure, as observed by SEM, TEM, SAD and Raman-scattering techniques. They are about 100–200 nm in thickness and a few tens micrometers in length. Electrochemical characterization of α-MoO3 plates casted on Pt electrodes was performed by Cyclic Voltammetry in phosphate buffer to investigate the properties of this material against methanol oxidation. Reported results indicate that α-MoO3/Pt devices were suitable to promote the electroxidation of methanol in sensing and/or fuel cell anodes development applications.

Keywords

Crystal growth Electron microscopy Methanol 

References

  1. 1.
    Lu, X., Wang, R., Yang, F., Jiao, W., Liu, W., Hao, L., He, X.: J. Mater. Chem. C 4, 6720–6726 (2016)CrossRefGoogle Scholar
  2. 2.
    Zhang, H., Gao, L., Gong, Y.: Electrochem. Commun. 52, 67–70 (2015)CrossRefGoogle Scholar
  3. 3.
    Dighore, N.R., Anandgaonker, P.L., Gaikwad, S.T., Rajbhoj, A.S.: Mater. Sci.-Pol. 33, 163–168 (2015)Google Scholar
  4. 4.
    Liu, Z., Zhong, M., Tang, C.: Large-scale oxide nanostructures grown by thermal oxidation. In: IOP Conference Series: Materials Science and Engineering, IOP Publishing, pp. 012022 (2014)Google Scholar
  5. 5.
    Martínez, H., Torres, J., Rodríguez-García, M., Carreño, L.L.: Gas sensing properties of nanostructured MoO3 thin films prepared by spray pyrolysis. Physica B 407, 3199–3202 (2012)CrossRefGoogle Scholar
  6. 6.
    Zhao, L., Thomas, J.P., Heinig, N.F., Abd-Ellah, M., Wang, X., Leung, K.: Enhanced catalytic activity of palladium nanoparticles confined inside porous carbon in methanol electro-oxidation. Mater. Chem. 100(C2), 2707–2714 (2014)Google Scholar
  7. 7.
    Chirizzi, D., Guascito, M.R., Filippo, E., Malitesta, C., Tepore, A.: A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol). Talanta 147, 124–131 (2016)CrossRefGoogle Scholar
  8. 8.
    Filippo, E., Baldassarre, F., Tepore, M., Guascito, M.R., Chirizzi, D., Tepore, A.: Characterization of hierarchical α-MoO3 plates toward resistive heating synthesis: electrochemical activity of α-MoO3/Pt modified electrode toward methanol oxidation at neutral pH. Nanotechnology 28:215601 (12 pp) (2017)Google Scholar
  9. 9.
    Py, M., Maschke, K.: Intra-and interlayer contributions to the lattice vibrations in MoO3. Physica B+C 105, 370–374 (1981)Google Scholar
  10. 10.
    Seguin, L., Figlarz, M., Cavagnat, R., Lassègues, J.-C.: Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 51, 1323–1344 (1995)CrossRefGoogle Scholar
  11. 11.
    Choopun, S., Wongrat, E., Hongsith, N.: INTECH Open Access Publisher (2010)Google Scholar
  12. 12.
    Chernova, N.A., Roppolo, M., Dillon, A.C., Whittingham, M.S.: Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chem. 19, 2526–2552 (2009)CrossRefGoogle Scholar
  13. 13.
    Ding, Q., Huang, H., Duan, J., Gong, J., Yang, S., Zhao, X., Du, Y.: Molybdenum trioxide nanostructures prepared by thermal oxidization of molybdenum. J. Cryst. Growth 294, 304–308 (2006)CrossRefGoogle Scholar
  14. 14.
    Kulesza, P.J., Pieta, I.S., Rutkowska, I.A., Wadas, A., Marks, D., Klak, K., Stobinski, L., Cox, J.: A. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides Electrochim. Acta 110, 474–483 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Emanuela Filippo
    • 1
  • Daniela Chirizzi
    • 2
    • 5
  • Francesca Baldassarre
    • 3
  • Marco Tepore
    • 1
  • Maria Rachele Guascito
    • 3
  • Antonio Tepore
    • 4
  1. 1.Dipartimento di Matematica e FisicaUniversità del SalentoLecceItaly
  2. 2.Istituto Zooprofilattico Sperimentale di Puglia e BasilicataFoggiaItaly
  3. 3.Dipartimento di Scienze e Tecnologie Biologiche e AmbientaliUniversità del SalentoLecceItaly
  4. 4.Dipartimento di Beni CulturaliUniversità del SalentoLecceItaly
  5. 5.Dipartimento di Scienze Biologiche Tecnologie ed AmbientalUniversità del SalentoLecceItaly

Personalised recommendations