Skip to main content

Automated, Constraint-Based Analysis of Tethered DNA Nanostructures

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10467))

Included in the following conference series:

Abstract

Implementing DNA computing circuits using components tethered to a surface offers several advantages over using components that freely diffuse in bulk solution. However, automated computational modeling of tethered circuits is far more challenging than for solution-phase circuits, because molecular geometry must be taken into account when deciding whether two tethered species may interact. Here, we tackle this issue by translating a tethered molecular circuit into a constraint problem that encodes the possible physical configurations of the components, using a simple biophysical model. We use a satisfaction modulo theories (SMT) solver to determine whether the constraint problem associated with a given structure is satisfiable, which corresponds to whether that structure is physically realizable given the constraints imposed by the tether geometry. We apply this technique to example structures from the literature, and discuss how this approach could be integrated with a reaction enumerator to enable fully automated analysis of tethered molecular computing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the Supporting Information (available from the first author’s web page) for full details of the examples and corresponding constraints.

References

  1. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)

    Article  Google Scholar 

  2. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)

    Article  Google Scholar 

  3. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. PNAS 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  4. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009)

    Google Scholar 

  5. Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit design. JRS Interface 9(68), 470–486 (2012)

    Article  Google Scholar 

  6. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)

    Article  Google Scholar 

  7. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011)

    Article  Google Scholar 

  8. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  9. Tikhomirov, G., Petersen, P., Qian, L.: Programmable disorder in random DNA tilings. Nat. Nanotechnol. 12, 251–259 (2017)

    Article  Google Scholar 

  10. Bui, H., Miao, V., Garg, S., Mokhtar, R., Song, T., Reif, J.: Design and analysis of localized DNA hybridization chain reactions. Small 13(12), 1602983 (2017)

    Article  Google Scholar 

  11. Muscat, R.A., Strauss, K., Ceze, L., Seelig, G.: DNA-based molecular architecture with spatially localized components. In: Proceedings of ISCA 13 (2013)

    Google Scholar 

  12. Dalchau, N., Chandran, H., Gopalkrishnan, N., Phillips, A., Reif, J.: Probabilistic analysis of localized DNA hybridization circuits. ACS Synth. Biol. 4(8), 898–913 (2015)

    Article  Google Scholar 

  13. Walsh, A.S., Yin, H., Erben, C.M., Wood, M.J.A., Turberfield, A.J.: DNA cage delivery to mammalian cells. ACS Nano 5(7), 5427–5432 (2011)

    Article  Google Scholar 

  14. Lakin, M.R., Petersen, R., Gray, K.E., Phillips, A.: Abstract modelling of tethered DNA Circuits. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 132–147. Springer, Cham (2014). doi:10.1007/978-3-319-11295-4_9

    Google Scholar 

  15. Petersen, R.L., Lakin, M.R., Phillips, A.: A strand graph semantics for DNA-based computation. Theor. Comput. Sci. 632, 43–73 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  17. Jovanović, D., Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3_27

    Chapter  Google Scholar 

  18. Grun, C., Werfel, J., Zhang, D.Y., Yin, P.: DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology. JRS Interface 12, 20150580 (2015)

    Article  Google Scholar 

  19. Genot, A.J., Zhang, D.Y., Bath, J., Turberfield, A.J.: Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J. Am. Chem. Soc. 133, 2177–2182 (2011)

    Article  Google Scholar 

  20. Doye, J.P.K., Ouldridge, T.E., Louis, A.A., Romano, F., Šulc, P., Matek, C., Snodin, B.E.K., Rovigatti, L., Schreck, J.S., Harrison, R.M., Smith, W.P.J.: Coarse-graining DNA for simulations of DNA nanotechnology. Phys. Chem. Chem. Phys. 15, 20395–20414 (2013)

    Article  Google Scholar 

  21. Dirks, R.M., Pierce, N.A.: An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J. Comput. Chem. 25, 1295–1304 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under grants 1525553, 1518861, and 1318833. The authors thank Neil Dalchau and Rasmus Petersen for productive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Lakin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lakin, M.R., Phillips, A. (2017). Automated, Constraint-Based Analysis of Tethered DNA Nanostructures. In: Brijder, R., Qian, L. (eds) DNA Computing and Molecular Programming. DNA 2017. Lecture Notes in Computer Science(), vol 10467. Springer, Cham. https://doi.org/10.1007/978-3-319-66799-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66799-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66798-0

  • Online ISBN: 978-3-319-66799-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics