Skip to main content

Development of Suitable Anode Materials for Microbial Fuel Cells

  • Chapter
  • First Online:
Microbial Fuel Cell

Abstract

Microbial fuel cells (MFCs) and related bioelectrochemical systems (BESs) have shown impressive developments for many purposes over the past decade (Kalathil et al. 2012; Han et al. 2013, 2014, 2016). Even with the noticeable improvements in power density, the large-scale application of MFCs is still limited due to the low power generation and high cost (Wei et al. 2011). To take this technology from laboratory-scale research to commercial applications, the cost and the performance of these systems need to be optimized further. The anode electrode plays an important role in the performance and cost of MFCs. The electrode materials in MFCs have some general and individual characteristics. In general, electrode materials must have good conduction, excellent biocompatibility, good chemical stability, high mechanical strength and low cost. The anode material design has attracted an enormous number of studies over the past decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, Y., Hatzell, M. C., Zhang, F., & Logan, B. E. (2014). Different electrode configurations to optimize performance of multi-electrode microbial fuel cells for generating power or treating domestic wastewater. Journal of Power Sources, 249, 440–445.

    Article  CAS  Google Scholar 

  • Antonietti, M., Fechler, N., & Fellinger, T.-P. (2014). Carbon aerogels and monoliths: Control of porosity and nanoarchitecture via sol–gel routes. Chemistry of Materials, 26, 196–210.

    Article  CAS  Google Scholar 

  • Baudler, A., Schmidt, I., Langner, M., Greiner, A., & Schroder, U. (2015). Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy & Environmental Science, 8, 2048–2055.

    Article  CAS  Google Scholar 

  • Benetton, X. D., Navarro-Ávila, S. G., & Carrera-Figueiras, C. (2010). Electrochemical evaluation of Ti/TiO2-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for syntheticwastewater treatment. Journal of New Materials for Electrochemical Systems, 13, 1–6.

    Google Scholar 

  • Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21, 1229–1232.

    Article  CAS  Google Scholar 

  • Chen, S., Liu, Q., He, G., Zhou, Y., Hanif, M., Peng, X., Wang, S., & Hou, H. (2012). Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells. Journal of Materials Chemistry, 22, 18609–18613.

    Article  CAS  Google Scholar 

  • Cheng, S., & Logan, B. E. (2007). Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications, 9, 492–496.

    Article  Google Scholar 

  • Crittenden, S. R., Sund, C. J., & Sumner, J. J. (2006). Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir, 22, 9473–9476.

    Article  CAS  Google Scholar 

  • Deng, Q., Li, X., Zuo, J., Ling, A., & Logan, B. E. (2010). Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. Journal of Power Sources, 195, 1130–1135.

    Article  CAS  Google Scholar 

  • Du, H., Bu, Y., Shi, Y., Zhong, Q., & Wang, J. (2016). Effect of an anode modified with nitrogenous compounds on the performance of a microbial fuel cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 527–533.

    Article  CAS  Google Scholar 

  • Dumas, C., Mollica, A., Féron, D., Basséguy, R., Etcheverry, L., & Bergel, A. (2007). Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials. Electrochimica Acta, 53, 468–473.

    Article  CAS  Google Scholar 

  • Dumas, C., Basseguy, R., & Bergel, A. (2008). Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochimica Acta, 53, 5235–5241.

    Article  CAS  Google Scholar 

  • Dumitru, A., Morozan, A., Ghiurea, M., Scott, K., & Vulpe, S. (2008). Biofilm growth from wastewater on MWNTs and carbon aerogels. Physica Status Solidi (a), 205, 1484–1487.

    Article  CAS  Google Scholar 

  • Erable, B., & Bergel, A. (2009). First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm. Bioresource Technology, 100, 3302–3307.

    Article  CAS  Google Scholar 

  • Feng, Y., Yang, Q., Wang, X., & Logan, B. E. (2010). Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. Journal of Power Sources, 195, 1841–1844.

    Article  CAS  Google Scholar 

  • Garshol, T., & Hasvold, O. (1995). Galvanic seawater cell. Google Patents.

    Google Scholar 

  • Guo, K., Freguia, S., Dennis, P. G., Chen, X., Donose, B. C., Keller, J., Gooding, J. J., & Rabaey, K. (2013). Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environmental Science & Technology, 47, 7563–7570.

    Article  CAS  Google Scholar 

  • Guo, W., Cui, Y., Song, H., & Sun, J. (2014). Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal. Bioprocess and Biosystems Engineering, 37, 1749–1758.

    Article  CAS  Google Scholar 

  • Gutierrez, M. C., Garcia-Carvajal, Z. Y., Hortiguela, M. J., Yuste, L., Rojo, F., Ferrer, M. L., & del Monte, F. (2007). Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli. Journal of Materials Chemistry, 17, 2992–2995.

    Article  CAS  Google Scholar 

  • Han, T. H., Khan, M. M., Kalathil, S., Lee, J., & Cho, M. H. (2013). Simultaneous enhancement of methylene blue degradation and power generation in a microbial fuel cell by gold nanoparticles. Industrial & Engineering Chemistry Research, 52, 8174–8181.

    Article  CAS  Google Scholar 

  • Han, T. H., Cho, M. H., & Lee, J. (2014). Indole oxidation enhances electricity production in an E. coli-catalyzed microbial fuel cell. Biotechnology and Bioprocess Engineering, 19, 126–131.

    Article  CAS  Google Scholar 

  • Han, T. H., Sawant, S. Y., Hwang, S.-J., & Cho, M. H. (2016). Three-dimensional, highly porous N-doped carbon foam as microorganism propitious, efficient anode for high performance microbial fuel cell. RSC Advances, 6, 25799–25807.

    Article  CAS  Google Scholar 

  • Haslett, N. D., Rawson, F. J., Barriëre, F., Kunze, G., Pasco, N., Gooneratne, R., & Baronian, K. H. R. (2011). Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosensors and Bioelectronics, 26, 3742–3747.

    Article  CAS  Google Scholar 

  • Hays, S., Zhang, F., & Logan, B. E. (2011). Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. Journal of Power Sources, 196, 8293–8300.

    Article  CAS  Google Scholar 

  • Hou, J., Liu, Z., Yang, S., & Zhou, Y. (2014). Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. Journal of Power Sources, 258, 204–209.

    Article  CAS  Google Scholar 

  • Hu, H., Zhao, Z., Wan, W., Gogotsi, Y., & Qiu, J. (2013). Ultralight and highly compressible graphene aerogels. Advanced Materials, 25, 2219–2223.

    Article  CAS  Google Scholar 

  • Huang, Y.-X., Liu, X.-W., Xie, J.-F., Sheng, G.-P., Wang, G.-Y., Zhang, Y.-Y., Xu, A.-W., & Yu, H.-Q. (2011). Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chemical Communications, 47, 5795–5797.

    Article  CAS  Google Scholar 

  • Jiang, D., Curtis, M., Troop, E., Scheible, K., McGrath, J., Hu, B., Suib, S., Raymond, D., & Li, B. (2011). A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. International Journal of Hydrogen Energy, 36, 876–884.

    Article  CAS  Google Scholar 

  • Kalathil, S., Lee, J., & Cho, M. H. (2011). Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnology, 29, 32–37.

    Article  CAS  Google Scholar 

  • Kalathil, S., Lee, J., & Cho, M. H. (2012). Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Bioresource Technology, 119, 22–27.

    Article  CAS  Google Scholar 

  • Kalathil, S., Nguyen, V. H., Shim, J.-J., Khan, M. M., Lee, J., & Cho, M. H. (2013). Enhanced Performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. Journal of Nanoscience and Nanotechnology, 13, 7712–7716.

    Article  CAS  Google Scholar 

  • Karthikeyan, R., Krishnaraj, N., Selvam, A., Wong, J. W.-C., Lee, P. K. H., Leung, M. K. H., & Berchmans, S. (2016). Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresource Technology, 217, 113–120.

    Article  CAS  Google Scholar 

  • Katuri, K., Ferrer, M. L., Gutierrez, M. C., Jimenez, R., del Monte, F., & Leech, D. (2011). Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation. Energy & Environmental Science, 4, 4201–4210.

    Article  CAS  Google Scholar 

  • Kumar, G. G., Sarathi, V. G. S., & Nahm, K. S. (2013). Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosensors and Bioelectronics, 43, 461–475.

    Article  CAS  Google Scholar 

  • Liang, P., Wang, H., Xia, X., Huang, X., Mo, Y., Cao, X., & Fan, M. (2011). Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosensors and Bioelectronics, 26, 3000–3004.

    Article  CAS  Google Scholar 

  • Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38, 2281–2285.

    Article  CAS  Google Scholar 

  • Liu, H., Cheng, S., & Logan, B. E. (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 39, 5488–5493.

    Article  CAS  Google Scholar 

  • Liu, J., Liu, J., He, W., Qu, Y., Ren, N., & Feng, Y. (2014). Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode. Journal of Power Sources, 265, 391–396.

    Article  CAS  Google Scholar 

  • Logan, B., Cheng, S., Watson, V., & Estadt, G. (2007). Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology, 41, 3341–3346.

    Article  CAS  Google Scholar 

  • Logan, B. E. (2008). Microbial fuel cells (p. 53). Hoboken: Wiley.

    Google Scholar 

  • Lowy, D. A., Tender, L. M., Zeikus, J. G., Park, D. H., & Lovley, D. R. (2006). Harvesting energy from the marine sediment–water interface. II: Kinetic activity of anode materials. Biosensors and Bioelectronics, 21, 2058–2063.

    Article  CAS  Google Scholar 

  • Mapelli, C., Mapelli, V., Olsson, L., Mombelli, D., Gruttadauria, A., & Barella, S. (2013). Viability study of the use of cast iron open cell foam as microbial fuel cell electrodes. Advanced Engineering Materials, 15, 112–117.

    Article  CAS  Google Scholar 

  • Michaelidou, U., ter Heijne, A., Euverink, G. J. W., Hamelers, H. V. M., Stams, A. J. M., & Geelhoed, J. S. (2011). Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. Applied and Environmental Microbiology, 77, 1069–1075.

    Article  CAS  Google Scholar 

  • Mink, J. E., & Hussain, M. M. (2013). Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode. ACS Nano, 7, 6921–6927.

    Article  CAS  Google Scholar 

  • Nardecchia, S., Carriazo, D., Ferrer, M. L., Gutierrez, M. C., & del Monte, F. (2013). Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chemical Society Reviews, 42, 794–830.

    Article  CAS  Google Scholar 

  • Pham, T. H., Aelterman, P., & Verstraete, W. (2009). Bioanode performance in bioelectrochemical systems: Recent improvements and prospects. Trends in Biotechnology, 27, 168–178.

    Article  CAS  Google Scholar 

  • Pisciotta, J. M., Zaybak, Z., Call, D. F., Nam, J.-Y., & Logan, B. E. (2012). Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Applied and Environmental Microbiology, 78, 5212–5219.

    Article  CAS  Google Scholar 

  • Qiao, Y., Li, C. M., Bao, S.-J., & Bao, Q.-L. (2007). Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 170, 79–84.

    Article  CAS  Google Scholar 

  • Qiao, Y., Wu, X.-S., Ma, C.-X., He, H., & Li, C. M. (2014). A hierarchical porous graphene/nickel anode that simultaneously boosts the bio- and electro-catalysis for high-performance microbial fuel cells. RSC Advances, 4, 21788–21793.

    Article  CAS  Google Scholar 

  • Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters, 25, 1531–1535.

    Article  CAS  Google Scholar 

  • Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 72, 7345–7348.

    Article  CAS  Google Scholar 

  • Rhoads, A., Beyenal, H., & Lewandowski, Z. (2005). Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environmental Science & Technology, 39, 4666–4671.

    Article  CAS  Google Scholar 

  • Richter, H., McCarthy, K., Nevin, K. P., Johnson, J. P., Rotello, V. M., & Lovley, D. R. (2008). Electricity generation by geobacter sulfurreducens attached to gold electrodes. Langmuir, 24, 4376–4379.

    Article  CAS  Google Scholar 

  • Roh, S.-H., & Woo, H.-G. (2015). Carbon nanotube composite electrode coated with polypyrrole for microbial fuel cell application. Journal of Nanoscience and Nanotechnology, 15, 484–487.

    Article  CAS  Google Scholar 

  • Rozendal, R. A., Hamelers, H. V. M., Rabaey, K., Keller, J., & Buisman, C. J. N. (2008). Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology, 26, 450–459.

    Article  CAS  Google Scholar 

  • Scott, K., Rimbu, G. A., Katuri, K. P., Prasad, K. K., & Head, I. M. (2007). Application of modified carbon anodes in microbial fuel cells. Process Safety and Environmental Protection, 85, 481–488.

    Article  CAS  Google Scholar 

  • Sell, D., Krämer, P., & Kreysa, G. (1989). Use of an oxygen gas diffusion cathode and a three-dimensional packed bed anode in a bioelectrochemical fuel cell. Applied Microbiology and Biotechnology, 31, 211–213.

    Article  CAS  Google Scholar 

  • Sun, J.-J., Zhao, H.-Z., Yang, Q.-Z., Song, J., & Xue, A. (2010). A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell. Electrochimica Acta, 55, 3041–3047.

    Article  CAS  Google Scholar 

  • Tang, X., Guo, K., Li, H., Du, Z., & Tian, J. (2011). Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresource Technology, 102, 3558–3560.

    Article  CAS  Google Scholar 

  • ter Heijne, A., Hamelers, H. V. M., Saakes, M., & Buisman, C. J. N. (2008). Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochimica Acta, 53, 5697–5703.

    Article  Google Scholar 

  • Wang, H., Côté, R., Faubert, G., Guay, D., & Dodelet, J. P. (1999). Effect of the pre-treatment of carbon black supports on the activity of fe-based electrocatalysts for the reduction of oxygen. The Journal of Physical Chemistry B, 103, 2042–2049.

    Article  CAS  Google Scholar 

  • Wang, X., Feng, Y. J., & Lee, H. (2008). Electricity production from beer brewery wastewater using single chamber microbial fuel cell. Water Science and Technology, 57, 1117–1121.

    Article  CAS  Google Scholar 

  • Wang, X., Cheng, S., Feng, Y., Merrill, M. D., Saito, T., & Logan, B. E. (2009). Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environmental Science & Technology, 43, 6870–6874.

    Article  CAS  Google Scholar 

  • Wang, H., Wang, G., Ling, Y., Qian, F., Song, Y., Lu, X., Chen, S., Tong, Y., & Li, Y. (2013a). High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale, 5, 10283–10290.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhao, C.-E., Sun, D., Zhang, J.-R., & Zhu, J.-J. (2013b). A graphene/poly (3,4-ethylenedioxythiophene) hybrid as an anode for high-performance microbial fuel cells. ChemPlusChem, 78, 823–829.

    Article  CAS  Google Scholar 

  • Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102, 9335–9344.

    Article  CAS  Google Scholar 

  • Wen, Q., Wu, Y., Zhao, L.-X., Sun, Q., & Kong, F.-Y. (2010). Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell. Journal of Zhejiang University SCIENCE B, 11, 87–93.

    Article  CAS  Google Scholar 

  • Xie, X., Hu, L., Pasta, M., Wells, G. F., Kong, D., Criddle, C. S., & Cui, Y. (2011). Three-dimensional carbon nanotube−textile anode for high-performance microbial fuel cells. Nano Letters, 11, 291–296.

    Article  CAS  Google Scholar 

  • Xie, X., Ye, M., Hu, L., Liu, N., McDonough, J. R., Chen, W., Alshareef, H. N., Criddle, C. S., & Cui, Y. (2012a). Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes. Energy & Environmental Science, 5, 5265–5270.

    Article  CAS  Google Scholar 

  • Xie, X., Yu, G., Liu, N., Bao, Z., Criddle, C. S., & Cui, Y. (2012b). Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy & Environmental Science, 5, 6862–6866.

    Article  CAS  Google Scholar 

  • Xie, X., Criddle, C., & Cui, Y. (2015). Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy & Environmental Science, 8, 3418–3441.

    Article  CAS  Google Scholar 

  • You, S., Zhao, Q., Zhang, J., Jiang, J., Wan, C., Du, M., & Zhao, S. (2007). A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. Journal of Power Sources, 173, 172–177.

    Article  CAS  Google Scholar 

  • Yuan, Y., & Kim, S.-H. (2008). Improved performance of a microbial fuel cell with polypyrrole/carbon black composite coated carbon paper anodes. Bulletin of the Korean Chemical Society, 29, 1344–1348.

    Article  CAS  Google Scholar 

  • Yuan, Y., Zhou, S., Liu, Y., & Tang, J. (2013). Nanostructured macroporous bioanode based on polyaniline-modified natural Loofah sponge for high-performance microbial fuel cells. Environmental Science & Technology, 47, 14525–14532.

    Google Scholar 

  • Zhang, F., Saito, T., Cheng, S., Hickner, M. A., & Logan, B. E. (2010). Microbial fuel cell cathodes with poly(dimethylsiloxane) diffusion layers constructed around stainless steel mesh current collectors. Environmental Science & Technology, 44, 1490–1495.

    Article  CAS  Google Scholar 

  • Zhao, F., Rahunen, N., Varcoe, J. R., Chandra, A., Avignone-Rossa, C., Thumser, A. E., & Slade, R. C. T. (2008). Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science & Technology, 42, 4971–4976.

    Article  CAS  Google Scholar 

  • Zhao, Y., Watanabe, K., Nakamura, R., Mori, S., Liu, H., Ishii, K., & Hashimoto, K. (2010). Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells. Chemistry - A European Journal, 16, 4982–4985.

    Article  CAS  Google Scholar 

  • Zhao, C., Wang, Y., Shi, F., Zhang, J., & Zhu, J.-J. (2013). High biocurrent generation in Shewanella-inoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode. Chemical Communications, 49, 6668–6670.

    Article  CAS  Google Scholar 

  • Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196, 4427–4435.

    Article  CAS  Google Scholar 

  • Zhou, M., Chi, M., Wang, H., & Jin, T. (2012). Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells. Biochemical Engineering Journal, 60, 151–155.

    Article  CAS  Google Scholar 

  • Zhu, C., Han, T. Y.-J., Duoss, E. B., Golobic, A. M., Kuntz, J. D., Spadaccini, C. M., & Worsley, M. A. (2015). Highly compressible 3D periodic graphene aerogel microlattices. Nature Communications, 6, 6962.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo Hwan Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, T.H., Sawant, S.Y., Cho, M.H. (2018). Development of Suitable Anode Materials for Microbial Fuel Cells. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_6

Download citation

Publish with us

Policies and ethics