Skip to main content

Microbial Ecology of Anodic Biofilms: From Species Selection to Microbial Interactions

  • Chapter
  • First Online:
Microbial Fuel Cell

Abstract

Microorganisms have two main lifestyles: planktonic or sessile. In the planktonic mode, bacteria live in a bulk phase with erratic movements according to hydrodynamics. Advantages of this way of life are the ability to reach new ecological niches and easy access to dissolved substrates. When a planktonic cell attaches to a surface, it becomes sessile. If the bacterial cell multiplies and secretes a polysaccharide matrix on the surface, it forms a structure called a biofilm. Biofilms have many advantages including increase of resistance to antimicrobial agents and the ability of microbes to cooperate for nutrients and/or substrates (Simões et al. 2010). According to the type of interactions existing between microbial biofilms and the surface, the support can be classified as inert (silica), nutritious (hydrocarbons) or artificial (electrode). Biofilms that develop on conductive materials and exchange electrons with them are called “electroactive biofilms”. In the case of anode respiring biofilms, i.e. biofilms transferring electrons to the conductive material, the terminal electron acceptor is not chemical (O2, NO3 , Fe(III), Mn(III)) but physical and the bacteria are called electroactive bacteria (EABs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balch, W. E., Schoberth, S., & Tanner, R. S. (1977). Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. International Journal of Systematic Bacteriology, 27(4), 355–361.

    Article  CAS  Google Scholar 

  • Bok, F. D., Plugge, C. M., & Stams, A. J. M. (2004). Interspecies electron transfer in methanogenic propionate degrading consortia. Water Research, 38, 1368–1375.

    Article  Google Scholar 

  • Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrode. Applied and Environmental Microbiology, 69, 1548–1555.

    Article  CAS  Google Scholar 

  • Bond, D. R., & Lovley, D. R. (2005). Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Applied and Environmental Microbiology, 71(4), 2186–2189.

    Article  CAS  Google Scholar 

  • Bond, D. R., Holmes, D. E., Tender, L. M., & Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 295, 483–486.

    Article  CAS  Google Scholar 

  • Boone, D. R., Johnson, R. L., & Liu, Y. (1989). Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Applied and Environmental Microbiology, 55(7), 1735–1741.

    CAS  Google Scholar 

  • Boucher, I., Vadeboncoeur, C., & Moineau, S. (2003). Characterization of genes involved in the metabolism of alpha-galactosides by Lactococcus raffinolactis. Applied and Environmental Microbiology, 69(7), 4049–4056.

    Article  CAS  Google Scholar 

  • Breitenstein, A., Wiegel, J., Haertig, C., Weiss, N., Andreesen, J. R., & Lechner, U. (2002). Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 52, 801–807.

    CAS  Google Scholar 

  • Brenner, D. J., McWhorter, A. C., Kai, A., Steigerwalt, A. G., & Farmer, J. J. (1986). Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter Femalfetion. Journal of Clinical Microbiology, 23(6), 1114–1120.

    CAS  Google Scholar 

  • Caccavo, F., Lonergan, D. J., Lovley, D. R., Davis, M., Stolz, J. F., & McInerney, M. J. (1994). Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Applied and Environmental Microbiology, 60(10), 3752–3759.

    CAS  Google Scholar 

  • Call, D., & Logan, B. E. (2008). Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environmental Microbiology Report, 42(9), 3401–3406.

    CAS  Google Scholar 

  • Call, D. F., & Logan, B. E. (2011). Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA. Applied and Environmental Microbiology, 77(24), 8791–8794.

    Article  CAS  Google Scholar 

  • Chae, K. J., Choi, M. J., Lee, J. W., Kim, K. Y., & Kim, I. S. (2009). Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresource Technology, 100(14), 3518–3525.

    Article  CAS  Google Scholar 

  • Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21(10), 1229–1232.

    Article  CAS  Google Scholar 

  • Chauhan, A., Ogram, A., & Reddy, K. R. (2004). Syntrophic-methanogenic associations along a nutrient gradient in the Florida Everglades. Applied and Environmental Microbiology, 70(6), 3475–3484.

    Article  CAS  Google Scholar 

  • Cheng, S., & Regan, J. M. (2008). Electricity generation by Rhodopseudomonas palustris. Environmental Science and Technology, 42(11), 4146–4151.

    Article  Google Scholar 

  • Choo, Y. F., Lee, J., Chang, I. S., & Kim, B. H. (2006). Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. Journal of Microbiology and Biotechnology, 16(9), 1481–1484.

    CAS  Google Scholar 

  • Chung, K., & Okabe, S. (2009). Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. Biotechnology and Bioengineering, 104(5), 901–910.

    Article  CAS  Google Scholar 

  • Cusick, R. D., Kiely, P. D., & Logan, B. E. (2010). A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. International Journal of Hydrogen Energy, 35(17), 8855–8861.

    Article  CAS  Google Scholar 

  • De Cárcer, D. A., Ha, P. T., Jang, J. K., & Chang, I. S. (2011). Microbial community differences between propionate-fed microbial fuel cell systems under open and closed circuit conditions. Applied Microbiology and Biotechnology, 89(3), 605–612.

    Article  Google Scholar 

  • Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25, 464–482.

    Article  CAS  Google Scholar 

  • Fan, Y., Han, S.-K., & Liu, H. (2012). Improved performance of CEA microbial fuel cells with increased reactor size. Energy & Environmental Science, 5, 8273–8280.

    Article  CAS  Google Scholar 

  • Fedorovich, V., Knighton, M. C., Pagaling, E., Ward, F. B., Free, A., & Goryanin, I. (2009). Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell. Applied and Environmental Microbiology, 75(23), 7326–7334.

    Article  CAS  Google Scholar 

  • Freguia, S., Rabaey, K., Yuan, Z., & Keller, J. (2008). Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environmental Science and Technology, 42(21), 7937–7943.

    Article  CAS  Google Scholar 

  • Freguia, S., Masuda, M., Tsujimura, S., & Kano, K. (2009). Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry, 76(1–2), 14–18.

    Article  CAS  Google Scholar 

  • Freguia, S., Teh, E. H., Boon, N., Leung, K. M., Keller, J., & Rabaey, K. (2010). Microbial fuel cells operating on mixed fatty acids. Bioresource Technology, 101(4), 1233–1238.

    Article  CAS  Google Scholar 

  • Gao, Y., Ryu, H., Santo Domingo, J. W., & Lee, H. S. (2014). Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells. Bioresource Technology, 153, 245–253.

    Article  CAS  Google Scholar 

  • Grabowski, A., Tindall, B. J., Bardin, V., Blanchet, D., & Jeanthon, C. (2005). Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. International Journal of Systematic and Evolutionary Microbiology, 55, 1113–1121.

    Article  CAS  Google Scholar 

  • Hari, A. R., Katuri, K. P., Gorron, E., Logan, B. E., & Saikaly, P. E. (2016). Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate. Applied Microbiology and Biotechnology, 100(13), 5999–6011.

    Article  CAS  Google Scholar 

  • Hatamoto, M., Imachi, H., Yashiro, Y., Ohashi, A., & Harada, H. (2008). Detection of active butyrate-degrading microorganisms in methanogenic sludges by RNA-based stable isotope probing. Applied and Environmental Microbiology, 74(11), 3610–3614.

    Article  CAS  Google Scholar 

  • Hesselsoe, M., Füreder, S., Schloter, M., Bodrossy, L., Iversen, N., Roslev, P., Nielsen, P. H., Wagner, M., & Loy, A. (2009). Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge. ISME Journal, 3, 1349–1364.

    Article  CAS  Google Scholar 

  • Hofstad, T., Olsen, I., Eribe, E. R., Falsen, E., Collins, M. D., & Lawson, P. A. (2000). Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). International Journal of Systematic and Evolutionary Microbiology, 3, 2189–2195.

    Article  Google Scholar 

  • Holt, H. M., Gahrn-Hansen, B., & Bruun, B. (2005). Shewanella algae and Shewanella putrefaciens: Clinical and microbiological characteristics. Clinical Microbiology and Infection, 11, 347–352.

    Article  CAS  Google Scholar 

  • Jung, S., & Regan, J. M. (2007). Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Applied Microbiology and Biotechnology, 77, 393–402.

    Article  CAS  Google Scholar 

  • Jung, S., & Regan, J. M. (2011). Influence of external resistance on electrogenesis, methanogenesis, and anode prokaryotic communities in microbial fuel cells. Applied and Environmental Microbiology, 77(2), 564–571.

    Article  CAS  Google Scholar 

  • Kiely, P. D., Call, D. F., Yates, M. D., Regan, J. M., & Logan, B. E. (2010). Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Applied Microbiology and Biotechnology, 88(1), 371–380.

    Article  CAS  Google Scholar 

  • Kiely, P. D., Rader, G., Regan, J. M., & Logan, B. E. (2011a). Long-term cathode performance and the microbial communities that develop in microbial fuel cells fed different fermentation end-products. Bioresource Technology, 102(1), 361–366.

    Article  CAS  Google Scholar 

  • Kiely, P. D., Regan, J. M., & Logan, B. E. (2011b). The electric picnic: Synergistic requirements for exoelectrogenic microbial communities. Current Opinion in Biotechnology, 22(3), 378–385.

    Article  CAS  Google Scholar 

  • Kimura, Z., & Okabe, S. (2013). Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen. ISME Journal, 7(8), 1472–1482.

    Article  CAS  Google Scholar 

  • Kotsyurbenko, O. R., Simankova, M. V., Nozhevnikova, A. N., Zhilina, T. N., Bolotina, N. P., Lysenko, A. M., & Osipov, G. A. (1995). New species of psychrophilic acetogens: Acetobacterium bakii sp. nov., A. paludosum sp. nov., A. fimetarium sp. nov. Archives of Microbiology, 163(1), 29–34.

    Article  CAS  Google Scholar 

  • Kragelund, C., Levantesi, C., Borger, A., Thelen, K., Eikelboom, D., Tandoi, V., Kong, Y., Krooneman, J., Larsen, P., Thomsen, T. R., & Nielsen, P. H. (2008). Identity, abundance and ecophysiology of filamentous bacteria belonging to the Bacteroidetes present in activated sludge plants. Microbiology, 154(3), 886–894.

    Article  CAS  Google Scholar 

  • Kumar, R., Singh, L., & Zularisam, A. W. (2016). Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56, 1322–1336.

    Article  CAS  Google Scholar 

  • Lalaurette, E., Thammannagowda, S., Mohagheghi, A., Maness, P. C., & Logan, B. E. (2009). Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. International Journal of Hydrogen Energy, 34(15), 6201–6210.

    Article  CAS  Google Scholar 

  • Lifang, D., FangBai, L., ShunGui, Z., DeYin, H., & JinRen, N. (2010). A study of electron-shuttle mechanism in Klebsiella pneumoniae based microbial fuel cells. Environmental Science and Technology, 55(1), 99–104.

    Google Scholar 

  • Liu, H., Cheng, S., & Logan, B. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science and Technology, 39(2), 658–662.

    Article  CAS  Google Scholar 

  • Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375–381.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (2012). Electromicrobiology. Annual Reviews in Microbiology, 66(1), 391–409.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Giovannoni, S. J., White, D. C., Champine, J. E., Phillips, E. J., Gorby, Y. A., & Goodwin, S. (1993). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Archives of Microbiology, 159(4), 336–344.

    Article  CAS  Google Scholar 

  • Lu, L., Xing, D. F., Ren, N. Q., & Logan, B. E. (2012). Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresource Technology, 124, 68–76.

    Article  CAS  Google Scholar 

  • Luedekingt, R., & Piret, E. L. (1959). A kinetic study of the lactic acid fermentation: Batch process at controlled pH. Journal of Biochemical and Microbiological Technology and Engineering, 1(4), 393–412.

    Article  Google Scholar 

  • Matsumoto, R., Fujita, S., & Goto, Y. (2015). Cascade reaction through different microorganisms for electrochemical oxidation of ethanol. ChemElectroChem, 2(12), 1888–1891.

    Article  CAS  Google Scholar 

  • Miller, T. L., & Wolin, M. J. (1996). Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Applied and Environmental Microbiology, 62(5), 1589–1592.

    CAS  Google Scholar 

  • Milliken, C. E., & May, H. D. (2007). Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Applied Microbiology and Biotechnology, 73(5), 1180–1189.

    Article  CAS  Google Scholar 

  • Moscoviz, R., Toledo-Alarcón, J., Trably, E., & Bernet, N. (2016a). Electro-fermentation: How to drive fermentation using electrochemical systems. Trends in Biotechnology. doi:https://doi.org/10.1016/j.tibtech.2016.04.009.

  • Moscoviz, R., Trably, E., & Bernet, N. (2016b). Consistent 1,3-propanediol production from glycerol in mixed culture fermentation over a wide range of pH. Biotechnology for Biofuels, 9, 32.

    Google Scholar 

  • Müller, N., Worm, P., Schink, B., Stams, A. J. M., & Plugge, C. M. (2010). Syntrophic butyrate and propionate oxidation processes: From genomes to reaction mechanisms. Environmental Microbiology Reports, 2, 489–499.

    Article  Google Scholar 

  • Nath, M. K., & Das, D. (2004). Improvement of fermentative hydrogen production: Various approaches. Applied and Environmental Microbiology, 65, 520–529.

    CAS  Google Scholar 

  • Oh, S., & Logan, B. E. (2005). Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research, 39, 4673–4682.

    Article  CAS  Google Scholar 

  • Pankhania, I. P., Spormann, A. M., Hamilton, W. A., & Thauer, R. K. (1988). Lactate conversion to acetate, CO2 and H2 in cell suspensions of Desulfovibrio vulgaris (Marburg): Indications for the involvement of an energy driven reaction. Archives of Microbiology, 150(1), 26–31.

    Article  CAS  Google Scholar 

  • Parameswaran, P., Torres, C. I., Lee, H. S., Krajmalnik-Brown, R., & Rittmann, B. E. (2009). Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: Electron balances. Biotechnology and Bioengineering, 103(3), 513–523.

    Article  CAS  Google Scholar 

  • Parameswaran, P., Zhang, H. S., Torres, C. I., Rittmann, B. E., & Krajmalnik-Brown, R. (2010). Microbial community structure in a biofilm anode fed with a fermentable substrate: The significance of hydrogen scavengers. Biotechnology and Bioengineering, 105(1), 69–78.

    Article  CAS  Google Scholar 

  • Popov, A. L., Michie, I. S., Kim, J. R., Dinsdale, R. M., Guwy, A. J., Esteves, S. R., & Premier, G. C. (2016). Enrichment strategy for enhanced bioelectrochemical hydrogen production and the prevention of methanogenesis. International Journal of Hydrogen Energy, 41(7), 4120–4131.

    Article  CAS  Google Scholar 

  • Qatibi, A. I., Nivière, V., & Garcia, J. L. (1991). Desulfovibrio alcoholovorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol, 1,2- and 1,3-propanediol. Archives of Microbiology, 155(2), 143–148.

    Article  CAS  Google Scholar 

  • Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology Letters, 25(18), 1531–1535.

    Article  CAS  Google Scholar 

  • Richter, H., Lanthier, M., Nevin, K. P., & Lovley, D. R. (2007). Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe (III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes. Applied and Environmental Microbiology, 73(16), 5347–5353.

    Article  CAS  Google Scholar 

  • Ruiz, V., Ilhan, Z. E., Kang, D. W., Krajmalnik-Brown, R., & Buitron, G. (2014). The source of inoculum plays a defining role in the development of MEC microbial consortia fed with acetic and propionic acid mixtures. Journal of Biotechnology, 182, 11–18.

    Article  Google Scholar 

  • Sakamoto, M., Kitahara, M., & Benno, Y. (2007). Parabacteroides johnsonii sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 57(1), 293–296.

    Google Scholar 

  • Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews, 61, 262–280.

    Google Scholar 

  • Schmidt, J. E., & Ahring, B. K. (1995). Interspecies electron transfer during propionate and butyrate degradation in mesophilic, granular sludge. Applied and Environmental Microbiology, 61(7), 2765–2767.

    CAS  Google Scholar 

  • Selembo, P. A., Perez, J. M., Lloyd, W. A., & Logan, B. E. (2009). High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. International Journal of Hydrogen Energy, 34(13), 5373–5381.

    Article  CAS  Google Scholar 

  • Shelobolina, E. S., Nevin, K. P., Blakeney-Hayward, J. D., Johnsen, C. V., Plaia, T. W., Krader, P., Woodard, T., Holmes, D. E., Vanpraagh, C. G., & Lovley, D. R. (2007). Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. International Journal of Systematic and Evolutionary Microbiology, 57(1), 126–135.

    Article  CAS  Google Scholar 

  • Simões, M., Simões, L. C., & Viera, M. J. (2010). A review of current and emergent biofilm control strategies. Food Science and Technology, 43(4), 573–583.

    Google Scholar 

  • Song, Y., Xiao, L., Jayamani, I., He, Z., & Cupples, A. M. (2015). A novel method to characterize bacterial communities affected by carbon source and electricity generation in microbial fuel cells using stable isotope probing and Illumina sequencing. Journal of Microbiological Methods, 108, 4–11.

    Article  CAS  Google Scholar 

  • Sun, D., Call, D. F., Kiely, P. D., Wang, A., & Logan, B. E. (2012). Syntrophic interactions improve power production in formic acid fed MFCs operated with set anode potentials or fixed resistances. Biotechnology and Bioengineering, 109(2), 405–414.

    Article  CAS  Google Scholar 

  • Temudo, M. F., Kleerebezem, R., & van Loosdrecht, M. (2007). Influence of the pH on (open) mixed culture fermentation of glucose: A chemostat study. Biotechnology and Bioengineering, 98(1), 69–79.

    Article  CAS  Google Scholar 

  • Thauer, R. K., Jungermann, K., & Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews, 41(1), 100–180.

    CAS  Google Scholar 

  • Thiele, J. H. (1991). Mixed-culture interactions in methanogenesis. In J. G. Zeikus & E. A. Johnson (Eds.), Mixed cultures in biotechnology (pp. 261–292). New York: McGraw-Hill.

    Google Scholar 

  • Tremouli, A., Martinos, M., Bebelis, S., & Lyberatos, G. (2016). Performance assessment of a four-air cathode single-chamber microbial fuel cell under conditions of synthetic and municipal wastewater treatments. Journal of Applied Electrochemistry, 46(4), 515–525.

    Article  CAS  Google Scholar 

  • Xia, X., Cao, X. X., Liang, P., Huang, X., Yang, S. P., & Zhao, G. G. (2010). Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells. Applied and Environmental Microbiology, 87(1), 383–390.

    CAS  Google Scholar 

  • Xie, C., & Yokota, A. (2005). Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. International Journal of Systematic and Evolutionary Microbiology, 55(6), 2419–2425.

    Article  Google Scholar 

  • Xing, D. F., Cheng, S. A., Regan, J. M., & Logan, B. E. (2009). Change in microbial communities in acetate- and glucose-fed microbial fuel cell in the presence of light. Biosensors & Bioelectronics, 25(1), 105–111.

    Article  CAS  Google Scholar 

  • Yu, J., Park, Y., Cho, H., Chun, J., Seon, J., Cho, S., & Lee, T. (2012). Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates. Water Science & Technology, 66(4), 748–754.

    Article  CAS  Google Scholar 

  • Zhao, F., Rahunen, N., Varcoe, J. R., Chandra, A., Avignone-Rossa, C., Thumser, A. E., & Slade, R. C. T. (2008). Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environmental Science and Technology, 42(13), 4971–4976.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Trably .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flayac, JC., Trably, E., Bernet, N. (2018). Microbial Ecology of Anodic Biofilms: From Species Selection to Microbial Interactions. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_4

Download citation

Publish with us

Policies and ethics