Skip to main content

Microbial Fuel Cell as Alternate Power Tool: Potential and Challenges

  • Chapter
  • First Online:
Microbial Fuel Cell

Abstract

The anxiety of mankind regarding the fast depletion of reserves of oil and natural gas has kindled the invention of viable alternate energy resources. Further the consequence of our heavy dependency on fossil fuels is reflected in the emission of greenhouse gases leading to global warming and ozone layer depletion which is adversely affecting our environment. In order to address these concerns, efforts are being made globally to develop alternate renewable energy technologies which are preferably green. Scientists have learnt, over the centuries, the technologies of energy conversion from one form to another. For example, harvesting of electrical energy is possible from different forms of energies such as tidal, wind, solar, hydro, thermal, chemical and mechanical. Conversion of chemical energy to electrical energy is known from the days of Volta (eighteenth century), the inventor of voltaic pile and who was the contemporary of Luigi Galvani who first observed animal electricity. The existence of electric field in living organisms can be explicitly seen in electric eel and in the electrical activity of human organs like heart (electrocardiography), brain (electroencephalogram), muscle (electromyogram), eye (electroocular) and in the transmission of signals in nerve cells and these phenomena indicate the scope of converting chemical energy available in biological systems to electrical energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaraj, M., Ren, Z. J., & Park, J.-D. (2014). Microbial fuel cell energy harvesting using synchronous flyback converter. Journal of Power Sources, 247, 636–642.

    Article  CAS  Google Scholar 

  • Aller, R. C. (1983). The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry. Journal of Marine Research, 41, 299–322.

    Article  CAS  Google Scholar 

  • Arends, J. B. A., & Verstraete, W. (2012). 100 years of microbial electricity production: Three concepts for the future. Microbial Biotechnology, 5, 333–346.

    Article  Google Scholar 

  • Ateya, B. G., & Al-Kharafi, F. M. (2002). Anodic oxidation of sulfide ions from chloride brines. Electrochemistry Communications, 4, 231–238.

    Article  CAS  Google Scholar 

  • Cohen, B. (1931). The bacterial culture as an electrical half-cell. Journal of Bacteriology, 21, 18–19.

    CAS  Google Scholar 

  • Dewan, A., Beyenal, H., & Lewandowski, Z. (2008). Scaling up microbial fuel cells. Environmental Science & Technology, 42, 7643–7648.

    Article  CAS  Google Scholar 

  • Donovan, C., Dewan, A., Heo, D., & Beyenal, H. (2008). Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environmental Science & Technology, 42, 8591–8596.

    Article  CAS  Google Scholar 

  • Donovan, C., Dewan, A., Peng, H., Heo, D., & Beyenal, H. (2011). Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. Journal of Power Sources, 196, 1171–1177.

    Article  CAS  Google Scholar 

  • Donovan, C., Dewan, A., Heo, D., Lewandowski, Z., & Beyenal, H. (2013). Sediment microbial fuel cell powering a submersible ultrasonic receiver: New approach to remote monitoring. Journal of Power Sources, 233, 79–85.

    Article  CAS  Google Scholar 

  • Fraiwan, A., & Choi, S. (2013). A multi-anode paper-based microbial fuel cell for disposable biosensors. IEEE SENSORS, 1908–1911.

    Google Scholar 

  • Fraiwan, A., & Choi, S. (2014). Bacteria-powered battery on paper. Physical Chemistry Chemical Physics, 16, 26288–26293.

    Article  CAS  Google Scholar 

  • Fraiwan, A., Mukherjee, S., Sundermier, S., & Choi, S. (2013a). A microfabricated paper-based microbial fuel cell. In IEEE 26th international conference on micro electro mechanical systems (MEMS) (pp. 809–812).

    Google Scholar 

  • Fraiwan, A., Mukherjee, S., Sundermier, S., Lee, H.-S., & Choi, S. (2013b). A paper-based microbial fuel cell: Instant battery for disposable diagnostic devices. Biosensors and Bioelectronics, 49, 410–414.

    Article  CAS  Google Scholar 

  • Ieropoulos, I. A., Greenman, J., Melhuish, C., & Horsfield, I. (2012). Microbial fuel cells for robotics: energy autonomy through artificial symbiosis. ChemSusChem, 5, 1020–1026.

    Article  CAS  Google Scholar 

  • Ieropoulos, I. A., Ledezma, P., Stinchcombe, A., Papaharalabos, G., Melhuish, C., & Greenman, J. (2013). Waste to real energy: The first MFC powered mobile phone. Physical Chemistry Chemical Physics, 15, 15312–15316.

    Article  CAS  Google Scholar 

  • Ieropoulos, I. A., Stinchcombe, A., Gajda, I., Forbes, S., Merino-Jimenez, I., Pasternak, G., Sanchez-Herranz, D., & Greenman, J. (2016). Pee power urinal – Microbial fuel cell technology field trials in the context of sanitation. Environmental Science: Water Research & Technology, 2, 336–343.

    CAS  Google Scholar 

  • Inglesby, A. E., Beatty, D. A., & Fisher, A. C. (2012). Rhodopseudomonas palustris purple bacteria fed Arthrospira maxima cyanobacteria: Demonstration of application in microbial fuel cells. RSC Advances, 2, 4829–4838.

    Article  CAS  Google Scholar 

  • Kelly, I., Holland, O., & Melhuish, C. (2000). Slugbot: A robotic predator in the natural world. In M. Sugisaka & H. Tanaka (Eds.), Proceedings of the international symposium on artificial life and robotics for human welfare and artificial life robotics (pp. 470–475).

    Google Scholar 

  • Kim, B. H., Ikeda, T., Park, H. S., Kim, H. J., Hyun, M. S., Kano, K., Takagi, K., & Tatsumi, H. (1999). Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnology Techniques, 13, 475–478.

    Article  CAS  Google Scholar 

  • Kumar, R., Singh, L., Wahid, Z. A., & Din, M. F. M. (2015). Exoelectrogens in microbial fuel cells toward bioelectricity generation: A review. International Journal of Energy Research, 39, 1048–1067.

    Article  CAS  Google Scholar 

  • Logan, B. E., & Regan, J. M. (2006). Microbial fuel cells—Challenges and applications. Environmental Science & Technology, 40, 5172–5180.

    Article  CAS  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192.

    Article  CAS  Google Scholar 

  • Meehan, A., Gao, H., & Lewandowski, Z. (2011). Energy harvesting with microbial fuel cell and power management system. IEEE Transactions on Power Electronics, 26, 176–181.

    Article  Google Scholar 

  • Melhuish, C., Ieropoulos, I., Greenman, J., & Horsfield, I. (2006). Energetically autonomous robots: Food for thought. Autonomous Robots, 21, 187–198.

    Article  Google Scholar 

  • Mijarez, R., Gaydecki, P., & Burdekin, M. (2007). Flood member detection for real-time structural health monitoring of sub-sea structures of offshore steel oilrigs. Smart Materials and Structures, 16, 1857–1869. IOP Publishing, ISSN: 0957-0233.

    Article  Google Scholar 

  • Nguyen, T. H., Fraiwan, A., & Choi, S. (2014). Paper-based batteries: A review. Biosensors and Bioelectronics, 54, 640–649.

    Article  CAS  Google Scholar 

  • Nielsen, M. E., Reimers, C. E., & Stecher, H. A. (2007). Enhanced power from chambered benthic microbial fuel cells. Environmental Science & Technology, 41, 7895–7900.

    Article  CAS  Google Scholar 

  • Pant, D., Singh, A., Van Bogaert, G., Irving Olsen, S., Singh Nigam, P., Diels, L., & Vanbroekhoven, K. (2012). Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Advances, 2, 1248–1263.

    Article  CAS  Google Scholar 

  • Park, D. H., & Zeikus, J. G. (2003). Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnology and Bioengineering, 81, 348–355.

    Article  CAS  Google Scholar 

  • Potter, M. C. (1910). On the difference of potential due to the vital activity of microorganisms. Proceedings of the University of Durham Philosophical Society 1910 (pp. 245–249).

    Google Scholar 

  • Potter, M. C. (1911). Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London B 1911 (pp. 260–276).

    Google Scholar 

  • Prasad, D., Sivaram, T. K., Berchmans, S., & Yegnaraman, V. (2006). Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent. Journal of Power Sources, 160, 991–996.

    Article  CAS  Google Scholar 

  • Qian, F., Baum, M., Gu, Q., & Morse, D. E. (2009). A 1.5 μL microbial fuel cell for on-chip bioelectricity generation. Lab on a Chip, 9, 3076–3081.

    Article  CAS  Google Scholar 

  • Rabaey, K., & Rozendal, R. A. (2010). Microbial electrosynthesis—Revisiting the electrical route for microbial production. Nature Reviews Microbiology, 8, 706–716.

    Article  CAS  Google Scholar 

  • Reimers, C. E., Girguis, P., Stecher, H. A., Tender, L. M., Ryckelynck, N., & Whaling, P. (2006). Microbial fuel cell energy from an ocean cold seep. Geobiology, 4, 123–136.

    Article  CAS  Google Scholar 

  • Rengasamy, K., & Berchmans, S. (2012). Simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus. Bioresource Technology, 104, 388–393.

    Article  CAS  Google Scholar 

  • Rhoads, A., Beyenal, H., & Lewandowski, Z. (2005). Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environmental Science & Technology, 39, 4666–4671.

    Article  CAS  Google Scholar 

  • Schroder, U., Harnisch, F., & Angenent, L. T. (2015). Microbial electrochemistry and technology: Terminology and classification. Energy & Environmental Science, 8, 513–519.

    Article  Google Scholar 

  • Sell, D. (2001). Bioelectrochemical fuel cells. In H.-J. Rehm & G. Reed (Eds.), Biotechnology. Volume 10: Special processes (2nd ed., pp. 5–10). Frankfurt am Main: Wiley-VCH.

    Google Scholar 

  • Sun, M., Zhai, L.-F., Li, W.-W., & Yu, H.-Q. (2016). Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chemical Society Reviews, 45, 2847–2870.

    Article  CAS  Google Scholar 

  • Taghavi, M., Greenman, J., Beccai, L., Mattoli, V., Mazzolai, B., Melhuish, C., & Ieropoulos, I. A. (2014). High performance, totally flexible, tubular microbial fuel cell. ChemElectroChem, 1, 1994–1999.

    Article  CAS  Google Scholar 

  • Taghavi, M., Stinchcombe, A., Greenman, J., Mattoli, V., Beccai, L., Mazzolai, B., Melhuish, C., & Ieropoulos, I. A. (2015). Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC. Bioinspiration & Biomimetics, 11, 016001.

    Article  CAS  Google Scholar 

  • Tender, L. M., Gray, S. A., Groveman, E., Lowy, D. A., Kauffman, P., Melhado, J., Tyce, R. C., Flynn, D., Petrecca, R., & Dobarro, J. (2008). The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. Journal of Power Sources, 179, 571–575.

    Article  CAS  Google Scholar 

  • Wang, H., Park, J.-D., & Ren, Z. (2012). Active energy harvesting from microbial fuel cells at the maximum power point without using resistors. Environmental Science & Technology, 46, 5247–5252.

    Article  Google Scholar 

  • Wang, H., Park, J.-D., & Ren, Z. J. (2015). Practical energy harvesting for microbial fuel cells: A review. Environmental Science & Technology, 49, 3267–3277.

    Article  CAS  Google Scholar 

  • Wilcock, W. S. D., & Kauffman, P. C. (1997). Development of a seawater battery for deep-water applications. Journal of Power Sources, 66, 71–75.

    Article  CAS  Google Scholar 

  • Wilkinson, S. (2000). “Gastrobots” – Benefits and challenges of microbial fuel cells in foodpowered robot applications. Autonomous Robots, 9, 99–111.

    Article  Google Scholar 

  • Winfield, J., Chambers, L. D., Rossiter, J., Greenman, J., & Ieropoulos, I. (2015). Urine-activated origami microbial fuel cells to signal proof of life. Journal of Materials Chemistry A, 3, 7058–7065.

    Article  CAS  Google Scholar 

  • Xing, D., Zuo, Y., Cheng, S., Regan, J. M., & Logan, B. E. (2008). Electricity generation by rhodopseudomonas palustris DX-1. Environmental Science & Technology, 42, 4146–4151.

    Article  CAS  Google Scholar 

  • Yang, Y., Sun, G., & Xu, M. (2011). Microbial fuel cells come of age. Journal of Chemical Technology & Biotechnology, 86, 625–632.

    Article  CAS  Google Scholar 

  • Zhang, J., Fraiwan, A., & Choi, S. (2015). Origami paper-based microbial fuel cells for disposable biosensors. 19th international conference on miniaturized systems for chemistry and life sciences, Gyeongju, Korea.

    Google Scholar 

Download references

Acknowledgement

The author acknowledges Ms. S. Sundari and Mrs. V. Manju, Research assistants, for the figures and the preparation of the references list respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Berchmans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berchmans, S. (2018). Microbial Fuel Cell as Alternate Power Tool: Potential and Challenges. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_21

Download citation

Publish with us

Policies and ethics