Skip to main content

Principles of Microbial Fuel Cell for the Power Generation

  • Chapter
  • First Online:
Microbial Fuel Cell

Abstract

Ever increasing energy demand has induced fossil fuel consumption, consequently pollution and global warming driving the world towards an unprecedented high and potentially devastating energy crisis. Therefore, water and energy securities are considered as major concerns in present scenario. Organic waste/wastewater signifies as a potential renewable feedstock to generate various forms of bioenergy aside from the remediation process by regulating the biological process. Bioenergy has gained significant attention as a sustainable and futuristic alternative to fossil fuels. Using waste for bioenergy through its remediation has instigated considerable interest and has further opened a new avenue for the use of renewable and inexhaustible energy sources. Therefore, the field of wastewater management and alternative energy are the most unexplored fields of Biotechnology and Science (Massoud et al. 2009). Microbial fuel cell (MFC) is gaining popularity as a promising tool for simultaneous waste treatment and current generation without polluting environment. The complete breakdown of a wide range of organic substrates to carbon dioxide and water is usually only possible with several enzymatic reaction steps which is easily achieved in MFCs (Logan 2008). Though research on MFCs was initiated in the 1960s during NASA’s space explorations, rapid gain in MFC research was observed during the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69, 1548–1555.

    Article  CAS  Google Scholar 

  • Canstein, H. v., Ogawa, J., Shimizu, S., & Lloyd, J. R. (2008). Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and Environmental Microbiology, 74, 615–623.

    Article  Google Scholar 

  • Chang, I. S., Jang, J. K., Gil, G. C., Kim, M., Kim, H. J., Cho, B. W., & Kim, B. H. (2004). Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosensors & Bioelectronics, 19, 607–613.

    Article  CAS  Google Scholar 

  • Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21, 1229–1232.

    Article  CAS  Google Scholar 

  • Coursolle, D., Baron, D. B., Bond, D. R., & Gralnick, J. A. (2010). The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. Journal of Bacteriology, 192, 467–474.

    Article  CAS  Google Scholar 

  • Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25, 464–482.

    Article  CAS  Google Scholar 

  • Elmekawy, A., Hegab, H. M., Dominguez-Benetton, X., & Pant, D. (2013). Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities. Bioresource Technology, 142, 672–682.

    Article  CAS  Google Scholar 

  • El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., Lau, W. M., Nealson, K. H., & Gorby, Y. A. (2010). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences, 107, 18127–18131.

    Article  CAS  Google Scholar 

  • Erable, B., Duţeanu, N. M., Ghangrekar, M. M., Dumas, C., & Scott, K. (2010). Application of electro-active biofilms. Biofouling, 26, 57–71.

    Article  CAS  Google Scholar 

  • Kalathil, S., Khan, M. M., Ansari, S. A., Lee, J., & Cho, M. H. (2013). Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale, 5, 6323.

    Article  CAS  Google Scholar 

  • Khan, M. M., Ansari, S. A., Amal, M. I., Lee, J., & Cho, M. H. (2013). Highly visible light active Ag@TiO 2 nanocomposites synthesized using an electrochemically active biofilm: A novel biogenic approach. Nanoscale, 5, 4427.

    Article  CAS  Google Scholar 

  • Khilari, S., Pandit, S., Ghangrekar, M. M., Das, D., & Pradhan, D. (2013). Graphene supported α-MnO2 nanotubes as a cathode catalyst for improved power generation and wastewater treatment in single-chambered microbial fuel cells. RSC Advances, 3, 7902.

    Article  CAS  Google Scholar 

  • Kim, Y., & Logan, B. E. (2013). Microbial desalination cells for energy production and desalination. Desalination, 308, 122–130.

    Article  CAS  Google Scholar 

  • Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., & Kim, B. H. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 30, 145–152.

    Article  CAS  Google Scholar 

  • Kracke, F., Vassilev, I., & Krömer, J. O. (2015). Microbial electron transport and energy conservation – The foundation for optimizing bioelectrochemical systems. Frontiers in Microbiology, 6, 575.

    Article  Google Scholar 

  • Liu, H., Grot, S., & Logan, B. E. (2005). Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology, 39, 4317–4320.

    Article  CAS  Google Scholar 

  • Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews. Microbiology, 7, 375–381.

    Article  CAS  Google Scholar 

  • Logan, B. E. (2012). Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. Chem Sus Chem, 5, 988–994.

    Article  CAS  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40, 5181–5192.

    Article  CAS  Google Scholar 

  • Logan, B. E., Call, D., Cheng, S., Hamelers, H. V. M., Sleutels, T. H. J. A., Jeremiasse, A. W., & Rozendal, R. A. (2008). Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environmental Science & Technology, 42, 8630–8640.

    Article  CAS  Google Scholar 

  • Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A., & Bond, D. R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences, 105, 3968–3973.

    Article  CAS  Google Scholar 

  • Massoud, M. A., Tarhini, A., & Nasr, J. A. (2009). Decentralized approaches to wastewater treatment and management: Applicability in developing countries. Journal of Environmental Management, 90, 652–659.

    Article  Google Scholar 

  • Mustakeem, F. (2015). Electrode materials for microbial fuel cells: Nanomaterial approach. Materials for Renewable and Sustainable Energy, 4, 22.

    Article  Google Scholar 

  • Pandit, S., Nayak, B. K., & Das, D. (2012). Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment. Bioresource Technology, 107, 97–102.

    Article  CAS  Google Scholar 

  • Pandit, S., Khilari, S., Roy, S., Ghangrekar, M. M., Pradhan, D., & Das, D. (2015). Reduction of start-up time through bioaugmentation process in microbial fuel cells using an isolate from dark fermentative spent media fed anode. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 72, 106–115.

    Article  CAS  Google Scholar 

  • Pham, T. H., Aelterman, P., & Verstraete, W. (2009). Bioanode performance in bioelectrochemical systems: Recent improvements and prospects. Trends in Biotechnology, 27, 168–178.

    Article  CAS  Google Scholar 

  • Pierozynski, B. (2011). On the hydrogen evolution reaction at nickel-coated carbon fibre in 30 wt.% KOH solution. International Journal of Electrochemical Science, 6, 63–77.

    CAS  Google Scholar 

  • Prasad, D., Sivaram, T. K., Berchmans, S., & Yegnaraman, V. (2006). Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent. Journal of Power Sources, 160, 991–996.

    Article  CAS  Google Scholar 

  • Qiao, Y., Bao, S.-J., & Li, C. M. (2010). Electrocatalysis in microbial fuel cells – From electrode material to direct electrochemistry. Energy & Environmental Science, 3, 544–553.

    Article  CAS  Google Scholar 

  • Rabaey, K., Rodríguez, J., Blackall, L. L., Keller, J., Gross, P., Batstone, D., Verstraete, W., & Nealson, K. H. (2007). Microbial ecology meets electrochemistry: Electricity-driven and driving communities. The ISME Journal, 1, 9–18.

    Article  CAS  Google Scholar 

  • Richter, L. V., Sandler, S. J., & Weis, R. M. (2012). Two isoforms of geobacter sulfurreducens PilA have distinct roles in pilus biogenesis, cytochrome localization, extracellular electron transfer and biofilm formation. Journal of Bacteriology, 194, 2551–2563.

    Article  CAS  Google Scholar 

  • Ringeisen, B. R., Henderson, E., Wu, P. K., Pietron, J., Ray, R., Little, B., Biffinger, J. C., & Jones-Meehan, J. M. (2006). High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environmental Science & Technology, 40, 2629–2634.

    Article  CAS  Google Scholar 

  • Rismani-Yazdi, H., Carver, S. M., Christy, A. D., & Tuovinen, O. H. (2008). Cathodic limitations in microbial fuel cells: An overview. Journal of Power Sources, 180, 683–694.

    Article  CAS  Google Scholar 

  • Stams, A. J. M., de Bok, F. A. M., Plugge, C. M., van Eekert, M. H. A., Dolfing, J., & Schraa, G. (2006). Exocellular electron transfer in anaerobic microbial communities. Environmental Microbiology, 8, 371–382.

    Article  CAS  Google Scholar 

  • Steidl, R. J., Lampa-Pastirk, S., & Reguera, G. (2016). Mechanistic stratification in electroactive biofilms of Geobacter sulfurreducens mediated by pilus nanowires. Nature Communications, 7, 12217.

    Article  CAS  Google Scholar 

  • Strik, D. P. B. T. B., Timmers, R. A., Helder, M., Steinbusch, K. J. J., Hamelers, H. V. M., & Buisman, C. J. N. (2011). Microbial solar cells: Applying photosynthetic and electrochemically active organisms. Trends in Biotechnology, 29, 41–49.

    Article  CAS  Google Scholar 

  • Varanasi, J. L., Roy, S., Pandit, S., & Das, D. (2015). Improvement of energy recovery from cellobiose by thermophillic dark fermentative hydrogen production followed by microbial fuel cell. International Journal of Hydrogen Energy, 40, 8311–8321.

    Article  CAS  Google Scholar 

  • Varanasi, J. L., Nayak, A. K., Sohn, Y., Pradhan, D., & Das, D. (2016). Improvement of power generation of microbial fuel cell by integrating tungsten oxide electrocatalyst with pure or mixed culture biocatalysts. Electrochimica Acta, 199, 154–163.

    Article  CAS  Google Scholar 

  • Yang, Y., Xu, M., Guo, J., & Sun, G. (2012). Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochemistry, 47, 1707–1714.

    Article  CAS  Google Scholar 

  • Zhao, F., Slade, R. C. T., & Varcoe, J. R. (2009). Techniques for the study and development of microbial fuel cells: An electrochemical perspective. Chemical Society Reviews, 38, 1926–1939.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandit, S., Das, D. (2018). Principles of Microbial Fuel Cell for the Power Generation. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_2

Download citation

Publish with us

Policies and ethics