Skip to main content

Sediment Microbial Fuel Cell and Constructed Wetland Assisted with It: Challenges and Future Prospects

  • Chapter
  • First Online:

Abstract

In recent years, the research work focus in energy sector has been shifted towards the renewable energy due to continuous depletion of conventional energy sources. On the other hand, exponentially increasing pollution in water reserves has stimulated phenomenal debates among researchers, pollution control agencies, and stakeholders in search of sustainable solution to remediate it. Sediment microbial fuel cell (SMFC) is one of the most promising approaches to address these two highly recognized problems together (Sajana et al. 2013b). In addition, SMFCs can offer distinctive opportunity to understand the flow of energy through electrochemically active bacteria, energy collection efficiency from natural systems, and the role of SMFCs for power generation and in situ bioremediation in the natural environment (Sajana et al. 2013a). SMFCs comprise two electrically conductive electrodes as anode and cathode placed 5–10 cm beneath the free surface of sediment and free water surface, respectively (Fig. 17.1a). Chemical energy associated with organic matter present in the sediment and water gets converted to electron and proton during oxidation catalyzed by microorganisms, working as biocatalyst on anode surface. Sediment permits the flow of protons from anode to cathode side serving as proton permeable natural medium. The anode collects extracellular electrons and transfer them to the cathode through an external circuit. On cathode, oxygen or other chemical oxidant (like nitrate) serve as terminal electro acceptor (TEA), which combines with electron and proton and produce water or other reduced product (Rismani-Yazdi et al. 2008). In addition, anions and cations can be used for charge balanced in the SMFCs based on their concentration in the fluid (Kim et al. 2007). Natural phenomenon of redox charge gradient have been used for development of SMFCs. Table 17.1 shows the brief summary of half-cell equations (anodic and cathodic) which can take place on anode and cathode during bioconversion of organic matter to electricity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahn, Y., & Logan, B. E. (2012). A multi-electrode continuous flow microbial fuel cell with separator electrode assembly design. Applied Microbiology and Biotechnology, 93, 2241–2248.

    Article  CAS  Google Scholar 

  • An, J., Jeon, H., Lee, J., & Chang, I. S. (2011). Bifunctional silver nanoparticle cathode in microbial fuel cells for microbial growth inhibition with comparable oxygen reduction reaction activity. Environmental Science & Technology, 45, 5441–5446.

    Article  CAS  Google Scholar 

  • Arends, J. B., Blondeel, E., Tennison, S. R., Boon, N., & Verstraete, W. (2012). Suitability of granular carbon as an anode material for sediment microbial fuel cells. Journal of Soils and Sediments, 12, 1197–1206.

    Article  CAS  Google Scholar 

  • Bandyopadhyay, P. R., Thivierge, D. P., McNeilly, F. M., & Fredette, A. (2013). An electronic circuit for trickle charge harvesting from littoral microbial fuel cells. IEEE Journal of Oceanic Engineering, 38, 32–42.

    Article  Google Scholar 

  • Behera, M., & Ghangrekar, M. M. (2009). Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresource Technology, 100, 5114–5121.

    Article  CAS  Google Scholar 

  • Berk, R. S., & Canfield, J. H. (1964). Bioelectrochemical energy conversion. Applied Microbiology, 12, 10–12.

    CAS  Google Scholar 

  • Conrad, R. (2002). Control of microbial methane production in wetland rice fields. Nutrient Cycling in Agroecosystems, 64, 59–69.

    Article  CAS  Google Scholar 

  • Corbella, C., Garfí, M., & Puigagut, J. (2014). Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence: Surveying the optimal scenario for microbial fuel cell implementation. Science of the Total Environment, 470, 754–758.

    Article  Google Scholar 

  • Del Campo, A. G., Canizares, P., Lobato, J., Rodrigo, M., & Morales, F. F. (2014). Effects of external resistance on microbial fuel cell’s performance. In Environment, energy and climate change II (pp. 175–197). Cham: Springer.

    Chapter  Google Scholar 

  • Des Jarlais, D. C., Feelemyer, J. P., Modi, S. N., Abdul-Quader, A., & Hagan, H. (2013). High coverage needle/syringe programs for people who inject drugs in low and middle income countries: A systematic review. BMC Public Health, 13, 1.

    Article  Google Scholar 

  • Dewan, A., Beyenal, H., & Lewandowski, Z. (2008). Scaling up microbial fuel cells. Environmental Science & Technology, 42, 7643–7648.

    Article  CAS  Google Scholar 

  • Doherty, L., & Zhao, Y. (2015). Operating a two-stage microbial fuel cell–constructed wetland for fuller wastewater treatment and more efficient electricity generation. Water Science and Technology, 72, 421–428.

    Article  CAS  Google Scholar 

  • Doherty, L., Zhao, Y., Zhao, X., Hu, Y., Hao, X., Xu, L., & Liu, R. (2015a). A review of a recently emerged technology: Constructed wetland–microbial fuel cells. Water Research, 85, 38–45.

    Article  CAS  Google Scholar 

  • Doherty, L., Zhao, Y., Zhao, X., & Wang, W. (2015b). Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology. Chemical Engineering Journal, 266, 74–81.

    Article  CAS  Google Scholar 

  • Donovan, C., Dewan, A., Heo, D., Lewandowski, Z., & Beyenal, H. (2013). Sediment microbial fuel cell powering a submersible ultrasonic receiver: New approach to remote monitoring. Journal of Power Sources, 233, 79–85.

    Article  CAS  Google Scholar 

  • Dordio, A. V., & Carvalho, A. J. P. (2013). Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. Journal of Hazardous Materials, 252, 272–292.

    Article  Google Scholar 

  • Dumas, C., Mollica, A., Féron, D., Basséguy, R., Etcheverry, L., & Bergel, A. (2007). Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials. Electrochimica Acta, 53, 468–473.

    Article  CAS  Google Scholar 

  • Ewing, T., Ha, P. T., Babauta, J. T., Tang, N. T., Heo, D., & Beyenal, H. (2014). Scale-up of sediment microbial fuel cells. Journal of Power Sources, 272, 311–319.

    Article  CAS  Google Scholar 

  • Fan, Y., Han, S.-K., & Liu, H. (2012). Improved performance of CEA microbial fuel cells with increased reactor size. Energy & Environmental Science, 5, 8273–8280.

    Article  CAS  Google Scholar 

  • Fang, Z., Song, H.-L., Cang, N., & Li, X.-N. (2013). Performance of microbial fuel cell coupled constructed wetland system for decolorization of azo dye and bioelectricity generation. Bioresource Technology, 144, 165–171.

    Article  CAS  Google Scholar 

  • Fang, Z., Song, H.-L., Cang, N., & Li, X.-N. (2015). Electricity production from azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions. Biosensors and Bioelectronics, 68, 135–141.

    Article  CAS  Google Scholar 

  • García-Muñoz, J., Fernández, V. M., De Lacey, A. L., Malki, M., & Amils, R. (2011). Electricity generation by microorganisms in the sediment-water interface of an extreme acidic microcosm. International Microbiology, 14, 73–81.

    Google Scholar 

  • Gong, Y., Radachowsky, S. E., Wolf, M., Nielsen, M. E., Girguis, P. R., & Reimers, C. E. (2011). Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environmental Science & Technology, 45, 5047–5053.

    Article  CAS  Google Scholar 

  • Hammer, D. A. (1989). Constructed wetlands for wastewater treatment: Municipal, industrial and agricultural. Boca Raton: CRC Press.

    Google Scholar 

  • Hasvold, Ø., Henriksen, H., Melv, E., Citi, G., Johansen, B. Ø., Kjønigsen, T., & Galetti, R. (1997). Sea-water battery for subsea control systems. Journal of Power Sources, 65, 253–261.

    Article  CAS  Google Scholar 

  • He, Z., & Angenent, L. T. (2006). Application of bacterial biocathodes in microbial fuel cells. Electroanalysis, 18, 2009–2015.

    Article  CAS  Google Scholar 

  • He, Z., Shao, H., & Angenent, L. T. (2007). Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosensors and Bioelectronics, 22, 3252–3255.

    Article  CAS  Google Scholar 

  • He, Z., Huang, Y., Manohar, A. K., & Mansfeld, F. (2008). Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry, 74, 78–82.

    Article  CAS  Google Scholar 

  • Hong, S. W., Chang, I. S., Choi, Y. S., & Chung, T. H. (2009). Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresource Technology, 100, 3029–3035.

    Article  CAS  Google Scholar 

  • Huang, Y., He, Z., Kan, J., Manohar, A. K., Nealson, K. H., & Mansfeld, F. (2012). Electricity generation from a floating microbial fuel cell. Bioresource Technology, 114, 308–313.

    Article  CAS  Google Scholar 

  • Kim, J. R., Cheng, S., Oh, S.-E., & Logan, B. E. (2007). Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology, 41, 1004–1009.

    Article  CAS  Google Scholar 

  • Krishnaraj, R. N., & Jong Sung, Y. (2015). Bioenergy: Opportunities and challenges. Boca Raton: CRC Press, Taylor and Francis group.

    Book  Google Scholar 

  • Li, J. H., Fu, Y. B., Liu, J., Li, A. L. & Ma, D. D. (2009). Effect of electrode shape on power and internal resistance in benthic microbial fuel cell material on marine sediment. Advanced Materials Research. Trans Tech Publ, pp. 2195–2198.

    Google Scholar 

  • Liu, H., Cheng, S., & Logan, B. E. (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 39, 5488–5493.

    Article  CAS  Google Scholar 

  • Liu, S., Song, H., Li, X., & Yang, F. (2013). Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system. International Journal of Photoenergy, 2013, 1–10.

    Google Scholar 

  • Liu, S., Song, H., Wei, S., Yang, F., & Li, X. (2014). Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland–microbial fuel cell systems. Bioresource Technology, 166, 575–583.

    Article  CAS  Google Scholar 

  • Manasrah, R., Raheed, M., & Badran, M. I. (2006). Relationships between water temperature, nutrients and dissolved oxygen in the northern Gulf of Aqaba, Red Sea. Oceanologia, 48, 237–253.

    Google Scholar 

  • Mathis, B., Marshall, C., Milliken, C., Makkar, R., Creager, S. E., & May, H. (2008). Electricity generation by thermophilic microorganisms from marine sediment. Applied Microbiology and Biotechnology, 78, 147–155.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Srikanth, S., Raghuvulu, S. V., Mohanakrishna, G., Kumar, A. K., & Sarma, P. (2009). Evaluation of the potential of various aquatic eco-systems in harnessing bioelectricity through benthic fuel cell: Effect of electrode assembly and water characteristics. Bioresource Technology, 100, 2240–2246.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Srikanth, S., Chiranjeevi, P., Arora, S., & Chandra, R. (2014). Algal biocathode for in situ terminal electron acceptor (TEA) production: Synergetic association of bacteria–microalgae metabolism for the functioning of biofuel cell. Bioresource Technology, 166, 566–574.

    Article  Google Scholar 

  • Nguyen, T. N., Woodward, R. T., Matlock, M. D., Denzer, A., & Selman, M. (2006). A guide to market-based approaches to water quality. Washington, DC: World Resource Institute.

    Google Scholar 

  • Nielsen, M. E., Reimers, C. E., & Stecher, H. A. (2007). Enhanced power from chambered benthic microbial fuel cells. Environmental Science & Technology, 41, 7895–7900.

    Article  CAS  Google Scholar 

  • Niessen, J., Schröder, U., Harnisch, F., & Scholz, F. (2005). Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation. Letters in Applied Microbiology, 41, 286–290.

    Article  CAS  Google Scholar 

  • Noori, M. T., Ghangrekar, M. M., Mitra, A., & Mukherjee, C. (2016a). Enhanced power generation in microbial fuel cell using MnO2-catalyzed cathode treating fish market wastewater. In Proceedings of the first international conference on recent advances in bioenergy research (pp. 285–294). New Delhi: Springer.

    Chapter  Google Scholar 

  • Noori, M. T., Ghangrekar, M. M., & Mukherjee, C. (2016b). V2O5 microflower decorated cathode for enhancing power generation in air-cathode microbial fuel cell treating fish market wastewater. International Journal of Hydrogen Energy, 41, 3638–3645.

    Article  CAS  Google Scholar 

  • Noori, M. T., Jain, S. C., Ghangrekar, M. M., & Mukherjee, C. K. (2016c). Biofouling inhibition and enhancing performance of microbial fuel cell using silver nano-particles as fungicide and cathode catalyst. Bioresource Technology, 220, 183–189.

    Article  CAS  Google Scholar 

  • Pinto, R., Srinivasan, B., Guiot, S., & Tartakovsky, B. (2011). The effect of real-time external resistance optimization on microbial fuel cell performance. Water Research, 45, 1571–1578.

    Article  CAS  Google Scholar 

  • Rajesh, P., Noori, M. T., & Ghangrekar, M. M. (2014). Controlling methanogenesis and improving power production of microbial fuel cell by lauric acid dosing. Water Science and Technology, 70, 1363–1369.

    Article  CAS  Google Scholar 

  • Reed, S. C., Crites, R. W., & Middlebrooks, E. J. (1995). Natural systems for waste management and treatment. New York: McGraw-Hill.

    Google Scholar 

  • Reimers, C. E., Tender, L. M., Fertig, S., & Wang, W. (2001). Harvesting energy from the marine sediment-water interface. Environmental Science & Technology, 35, 192–195.

    Article  CAS  Google Scholar 

  • Renslow, R., Donovan, C., Shim, M., Babauta, J., Nannapaneni, S., Schenk, J., & Beyenal, H. (2011). Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells. Physical Chemistry Chemical Physics, 13, 21573–21584.

    Article  CAS  Google Scholar 

  • Rismani-Yazdi, H., Carver, S. M., Christy, A. D., & Tuovinen, O. H. (2008). Cathodic limitations in microbial fuel cells: An overview. Journal of Power Sources, 180, 683–694.

    Article  CAS  Google Scholar 

  • Rosenbaum, M., Schröder, U., & Scholz, F. (2005). In situ electrooxidation of photobiological hydrogen in a photobioelectrochemical fuel cell based on Rhodobacter sphaeroides. Environmental Science & Technology, 39, 6328–6333.

    Article  CAS  Google Scholar 

  • Sacco, N. J., Figuerola, E. L., Pataccini, G., Bonetto, M. C., Erijman, L., & Cortón, E. (2012). Performance of planar and cylindrical carbon electrodes at sedimentary microbial fuel cells. Bioresource Technology, 126, 328–335.

    Article  CAS  Google Scholar 

  • Sajana, T., Ghangrekar, M. M., & Mitra, A. (2013a). Application of sediment microbial fuel cell for in situ reclamation of aquaculture pond water quality. Aquacultural Engineering, 57, 101–107.

    Article  Google Scholar 

  • Sajana, T., Ghangrekar, M. M., & Mitra, A. (2013b). Effect of pH and distance between electrodes on the performance of a sediment microbial fuel cell. Water Science and Technology, 68, 537–543.

    Article  CAS  Google Scholar 

  • Sajana, T., Ghangrekar, M. M., & Mitra, A. (2014). Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell. Bioresource Technology, 155, 84–90.

    Article  CAS  Google Scholar 

  • Saravanan, R., Arun, A., Venkatamohan, S., & Kandavelu, T. (2010). Membraneless dairy wastewater-sediment interface for bioelectricity generation employing Sediment Microbial Fuel Cell (SMFC). African Journal of Microbiology Research, 4, 2640–2646.

    CAS  Google Scholar 

  • Schamphelaire, L. D., Bossche, L. V. D., Dang, H. S., Höfte, M., Boon, N., Rabaey, K., & Verstraete, W. (2008). Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environmental Science & Technology, 42, 3053–3058.

    Article  Google Scholar 

  • Scott, K., Cotlarciuc, I., Hall, D., Lakeman, J., & Browning, D. (2008). Power from marine sediment fuel cells: The influence of anode material. Journal of Applied Electrochemistry, 38, 1313–1319.

    Article  CAS  Google Scholar 

  • Singh, D., Pratap, D., Baranwal, Y., Kumar, B., & Chaudhary, R. (2010). Microbial fuel cells: A green technology for power generation. Annals of. Biological Research, 1, 128–138.

    CAS  Google Scholar 

  • Song, T. S., Yan, Z. S., Zhao, Z. W., & Jiang, H. L. (2010a). Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances. Journal of Chemical Technology and Biotechnology, 85, 1489–1493.

    CAS  Google Scholar 

  • Song, Y.-C., Yoo, K. S., & Lee, S. K. (2010b). Surface floating, air cathode, microbial fuel cell with horizontal flow for continuous power production from wastewater. Journal of Power Sources, 195, 6478–6482.

    Article  CAS  Google Scholar 

  • Song, T.-S., Yan, Z.-S., Zhao, Z.-W., & Jiang, H.-L. (2011). Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess and Biosystems Engineering, 34, 621–627.

    Article  CAS  Google Scholar 

  • Song, T. S., Tan, W. M., Wu, X. Y., & Zhou, C. C. (2012). Effect of graphite felt and activated carbon fiber felt on performance of freshwater sediment microbial fuel cell. Journal of Chemical Technology and Biotechnology, 87, 1436–1440.

    Article  CAS  Google Scholar 

  • Strik, D. P., Snel, J. F., & Buisman, C. J. (2008). Green electricity production with living plants and bacteria in a fuel cell. International Journal of Energy Research, 32, 870–876.

    Article  CAS  Google Scholar 

  • Tang, N., Hong, W., Ewing, T., Beyenal, H., Kim, J.-H., & Heo, D. (2015). A self-sustainable power management system for reliable power scaling up of sediment microbial fuel cells. IEEE Transactions on Power Electronics, 30, 4626–4632.

    Article  Google Scholar 

  • Tender, L. M., Gray, S. A., Groveman, E., Lowy, D. A., Kauffman, P., Melhado, J., Tyce, R. C., Flynn, D., Petrecca, R., & Dobarro, J. (2008). The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. Journal of Power Sources, 179, 571–575.

    Article  CAS  Google Scholar 

  • Timmers, R. A., Rothballer, M., Strik, D. P., Engel, M., Schulz, S., Schloter, M., Hartmann, A., Hamelers, B., & Buisman, C. (2012). Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell. Applied Microbiology and Biotechnology, 94, 537–548.

    Article  CAS  Google Scholar 

  • Tiwari, B. R., & Ghangrekar, M. M. (2015). Enhancing Electrogenesis by pretreatment of mixed anaerobic sludge to be used as inoculum in microbial fuel cells. Energy & Fuels, 29, 3518–3524.

    Article  CAS  Google Scholar 

  • Tiwari, B. R., Noori, M. T., & Ghangrekar, M. M. (2016). A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell. Materials Chemistry and Physics, 182, 86–93.

    Article  CAS  Google Scholar 

  • Villasenor, J., Capilla, P., Rodrigo, M., Canizares, P., & Fernandez, F. (2013). Operation of a horizontal subsurface flow constructed wetland–microbial fuel cell treating wastewater under different organic loading rates. Water Research, 47, 6731–6738.

    Article  CAS  Google Scholar 

  • Wang, A., Cheng, H., Ren, N., Cui, D., Lin, N., & Wu, W. (2012). Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science & Engineering, 6, 569–574.

    Article  CAS  Google Scholar 

  • Wang, D.-B., Song, T.-S., Guo, T., Zeng, Q., & Xie, J. (2014). Electricity generation from sediment microbial fuel cells with algae-assisted cathodes. International Journal of Hydrogen Energy, 39, 13224–13230.

    Article  CAS  Google Scholar 

  • Wu, X. Y., Tong, F., Song, T. S., Gao, X. Y., Xie, J. J., Zhou, C. C., Zhang, L. X., & Wei, P. (2015). Effect of zeolite-coated anode on the performance of microbial fuel cells. Journal of Chemical Technology and Biotechnology, 90, 87–92.

    Article  CAS  Google Scholar 

  • Xu, B., Ge, Z., & He, Z. (2015). Sediment microbial fuel cells for wastewater treatment: Challenges and opportunities. Environmental Science: Water Research & Technology, 1, 279–284.

    CAS  Google Scholar 

  • Yadav, A. K., Dash, P., Mohanty, A., Abbassi, R., & Mishra, B. K. (2012). Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal. Ecological Engineering, 47, 126–131.

    Article  Google Scholar 

  • Zhang, Q., Li, Z., Zeng, G., Li, J., Fang, Y., Yuan, Q., Wang, Y., & Ye, F. (2009). Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: A case study of Xiangjiang watershed, China. Environmental Monitoring and Assessment, 152, 123–131.

    Article  CAS  Google Scholar 

  • Zhao, Y., Collum, S., Phelan, M., Goodbody, T., Doherty, L., & Hu, Y. (2013). Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch and continuous flow trials. Chemical Engineering Journal, 229, 364–370.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ghangrekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noori, M.T., Ghangrekar, M.M., Mukherjee, C.K. (2018). Sediment Microbial Fuel Cell and Constructed Wetland Assisted with It: Challenges and Future Prospects. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_17

Download citation

Publish with us

Policies and ethics