Skip to main content

Modelling of Reaction and Transport in Microbial Fuel Cells

  • Chapter
  • First Online:
Microbial Fuel Cell

Abstract

Understanding the fundamental processes underlying the microbial fuel cells (MFCs) can provide valuable insights in recognizing the key limiting factors, the scope of improvement of the system which in turn helps in the scaling-up the process. The science behind an MFC is complex and it involves a subtle interplay of various fields such as microbiology, physics and electrochemistry (Zhang and Halme 1995). A comprehensive understanding of various parameters involved in the process is essential for the improvement of power generation and to explore further applications. Modelling the system prior to experimentation can provide various perspectives and alternatives saving time and money. The physics of the process can be understood using quantitative predictions using modelling. It also provides valuable information about the dynamics of a process and thus important in reactor design and scale-up. Consequently, efficient monitoring of the process as well as precise control may be achieved through modelling (Marcus et al. 2007). Multi-scale modelling is crucial for a well-defined understanding of the process at both micro and macro scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chae, K., Choi, M., Ajayi, F., & Park, W. (2008). Mass transport through a proton exchange membrane (nafion) in microbial fuel cells. Energy & Fuels, 22, 169–176.

    Article  CAS  Google Scholar 

  • Christgen, B., Scott, K., Dolfing, J., Head, I. M., & Curtis, T. P. (2015). An evaluation of the performance and economics of membranes and separators in single chamber MFCs treating domestic wastewater. PloS One, 10, e0136108.

    Article  Google Scholar 

  • Garg, A., Vijayaraghavan, V., Mahapatra, S. S., Tai, K., & Wong, C. H. (2014). Performance evaluation of MFC by artificial intelligence methods. Expert Systems with Applications, 41, 1389–1399.

    Article  Google Scholar 

  • Harnisch, F., Warmbier, R., Schneider, R., & Schröder, U. (2009). Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems. Bioelectrochemistry, 75, 136–141.

    Article  CAS  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). MFCs: Methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (2006). Bug juice: Harvesting electricity with microorganisms. Nature Reviews. Microbiology, 4, 497–508.

    Article  CAS  Google Scholar 

  • Marcus, A. K., Torres, C. I., & Rittmann, B. E. (2007). Conduction-based modeling of the biofilm anode of an MFC. Biotechnology and Bioengineering, 98, 1171–1182.

    Article  CAS  Google Scholar 

  • Merkey, B. V., & Chopp, D. L. (2012). The performance of an MFC depends strongly on anode geometry: A multidimensional modeling study. Bulletin of Mathematical Biology, 74, 834–857.

    Article  Google Scholar 

  • Picioreanu, C., Katuri, K. P., Head, I. M., Van Loosdrecht, M. C. M., & Scott, K. (2008). Mathematical model for MFCs with anodic biofilms and anaerobic digestion. Water Science and Technology, 57(7), 965–971.

    Article  CAS  Google Scholar 

  • Picioreanu, C., Katuri, K. P., Van Loosdrecht, M. C. M., Head, I. M., & Scott, K. (2010). Modelling MFCs with suspended cells and added electron transfer mediator. Journal of Applied Electrochemistry, 40, 151–162.

    Article  CAS  Google Scholar 

  • Renslow, R., Donovan, C., Shim, M., Babauta, J. T., Nannapaneni, S., Schenk, J., & Beyenal, H. (2011). Oxygen reduction kinetics on graphite cathodes in sediment MFCs. Physical Chemistry Chemical Physics, 13, 21573–21584.

    Article  CAS  Google Scholar 

  • Stratford, J. P., Beecroft, N. J., Slade, R. C. T., Greening, A., & Avignone-Rossa, C. (2014). Anodic microbial community diversity as a predictor of the power output of MFCs. Bioresource Technology, 156, 84–91.

    Article  CAS  Google Scholar 

  • Tardast, A., Rahimnejad, M., Najafpour, G., Ghoreyshi, A., Premier, G. C., Bakeri, G., & Oh, S. E. (2014). Use of artificial neural network for the prediction of bioelectricity production in a membraneless MFC. Fuel, 117, 697–703.

    Article  CAS  Google Scholar 

  • Wang, X., Feng, Y. J., & Lee, H. (2008). Electricity production from beer brewery wastewater using single chamber MFC. Water Science and Technology, 57, 1117–1121.

    Article  CAS  Google Scholar 

  • Xu, J., Sheng, G.-P., Luo, H.-W., Li, W.-W., Wang, L.-F., & Yu, H.-Q. (2012). Fouling of proton exchange membrane (PEM) deteriorates the performance of MFC. Water Research, 46, 1817–1824.

    Article  CAS  Google Scholar 

  • Yan, M., & Fan, L. (2013). Constant voltage output in two-chamber MFC under fuzzy pid control. International Journal of Electrochemical Science, 8, 3321–3332.

    CAS  Google Scholar 

  • Zhang, X. C., & Halme, A. (1995). Modelling of a MFC process. Biotechnology Letters, 17, 809–814.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Veerubhotla, R., Dutta, S.K., Chakraborty, S. (2018). Modelling of Reaction and Transport in Microbial Fuel Cells. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_14

Download citation

Publish with us

Policies and ethics