Skip to main content

Microfluidic Microbial Fuel Cell: On-chip Automated and Robust Method to Generate Energy

  • Chapter
  • First Online:
Microbial Fuel Cell

Abstract

Microbial fuel cell (MFC) is a bio-electrochemical fuel cell where microorganisms, such as bacteria and virus, are used to catalyse the redox reaction to generate energy. Due to their inherent process, MFCs lead to the production of green and clean renewable energy in a self-sustainable manner. Even though, humongous work has been carried out in MFC domain leading to the exponentially increasing scientific output over the years, there has been limitation to harness MFC as a viable, workable but cost-effective remedy to the current energy and environmental challenges due to its expensiveness, low performance and challenges to scale-up (Lee et al. 2015a, b; Wang et al. 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abaci, H. E., Gledhill, K., Guo, Z., Christiano, A. M., & Shuler, M. L. (2015). Pumpless microfluidic platform for drug testing on human skin equivalents. Lab on a Chip, 15(3), 882–888.

    Article  CAS  Google Scholar 

  • Ahn, Y., & Schröder, U. (2015). Microfabricated, continuous-flow, microbial three-electrode cell for potential toxicity detection. BioChip Journal, 9(1), 27–34.

    Article  CAS  Google Scholar 

  • Chen, Y.-P., Zhao, Y., Qiu, K.-Q., Chu, J., Lu, R., Sun, M., et al. (2011). An innovative miniature MFC fabricated using photolithography. Biosensors and Bioelectronics, 26(6), 2841–2846.

    Article  CAS  Google Scholar 

  • Choban, E. R., Markoski, L. J., Wieckowski, A., & Kenis, P. J. A. (2004). Microfluidic fuel cell based on laminar flow. Journal of Power Sources, 128(1), 54–60.

    Article  CAS  Google Scholar 

  • Choi, S. (2015). Microscale MFCs: Advances and challenges. Biosensors and Bioelectronics, 69, 8–25.

    Article  CAS  Google Scholar 

  • Choi, S., & Chae, J. (2012). An array of microliter-sized MFCs generating 100 μW of power. Sensors and Actuators A: Physical, 177, 10–15.

    Article  CAS  Google Scholar 

  • Choi, S., & Chae, J. (2013). Optimal biofilm formation and power generation in a micro-sized MFC (MFC). Sensors and Actuators A: Physical, 195, 206–212.

    Article  CAS  Google Scholar 

  • Choi, G., Hassett, D. J., & Choi, S. (2015). A paper-based MFC array for rapid and high-throughput screening of electricity-producing bacteria. Analyst, 140(12), 4277–4283.

    Article  CAS  Google Scholar 

  • Dávila, D., Esquivel, J. P., Sabaté, N., & Mas, J. (2011). Silicon-based microfabricated MFC toxicity sensor. Biosensors and Bioelectronics, 26(5), 2426–2430.

    Article  Google Scholar 

  • Dyer, C. K. (1990). A novel thin-film electrochemical device for energy conversion CuO. Nature, 343(6258), 547–548.

    Article  CAS  Google Scholar 

  • Esquivel, J. P., Del Campo, F. J., Gomez de la Fuente, J. L., Rojas, S., & Sabate, N. (2014). Microfluidic fuel cells on paper: Meeting the power needs of next generation lateral flow devices. Energy & Environmental Science, 7(5), 1744–1749.

    Article  CAS  Google Scholar 

  • Fraiwan, A., & Choi, S. (2014). Bacteria-powered battery on paper. Physical Chemistry Chemical Physics, 16(47), 26288–26293.

    Article  CAS  Google Scholar 

  • Fraiwan, A., Mukherjee, S., Sundermier, S., Lee, H.-S., & Choi, S. (2013). A paper-based MFC: Instant battery for disposable diagnostic devices. Biosensors and Bioelectronics, 49, 410–414.

    Article  CAS  Google Scholar 

  • Fraiwan, A., Lee, H., & Choi, S. (2014). A multianode paper-based MFC: A potential power source for disposable biosensors. Sensors Journal, IEEE, 14(10), 3385–3390.

    Article  CAS  Google Scholar 

  • Gravesen, P., Branebjerg, J., & Jensen, O. S. (1993). Microfluidics–A review. Journal of Micromechanics and Microengineering, 3(4), 168.

    Article  CAS  Google Scholar 

  • Gurrola, M. P., Ortiz-Ortega, E., Farias-Zuñiga, C., Chávez-Ramírez, A. U., Ledesma-García, J., & Arriaga, L. G. (2016). Evaluation and coupling of a membraneless nanofluidic device for low-power applications. Journal of Power Sources, 307, 244–250.

    Article  CAS  Google Scholar 

  • Hashemi, N., Lackore, J. M., Sharifi, F., Goodrich, P. J., Winchell, M. L., & Hashemi, N. (2016). A paper-based MFC operating under continuous flow condition. Technology, 4, 1–6.

    Article  Google Scholar 

  • He, Y., Wu, Y., Fu, J.-Z., Gao, Q., & Qiu, J.-J. (2016). Developments of 3D printing microfluidics and applications in chemistry and biology: A review. Electroanalysis, 28(8), 1658–1678.

    Article  CAS  Google Scholar 

  • Hou, H., Li, L., Ceylan, C. U., Haynes, A., Cope, J., Wilkinson, H. H., et al. (2012). A microfluidic MFC array that supports long-term multiplexed analyses of electricigens. Lab on a Chip, 12(20), 4151–4159.

    Article  CAS  Google Scholar 

  • Kim, M. J., & Breuer, K. S. (2008). Microfluidic pump powered by self-organizing bacteria. Small, 4(1), 111–118.

    Article  CAS  Google Scholar 

  • Kirby, B. J. (2013). Micro- and nanoscale fluid mechanics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kjeang, E., Djilali, N., & Sinton, D. (2009). Microfluidic fuel cells: A review. Journal of Power Sources, 186(2), 353–369.

    Article  CAS  Google Scholar 

  • Konwarh, R., Gupta, P., & Mandal, B. B. (2016). Silk-microfluidics for advanced biotechnological applications: A progressive review. Biotechnology Advances, 34(5), 845–858.

    Article  CAS  Google Scholar 

  • Kou, S., Cheng, D., Sun, F., & Hsing, I. M. (2016). Microfluidics and microbial engineering. Lab on a Chip, 16(3), 432–446.

    Article  CAS  Google Scholar 

  • Lee, J. W., & Kjeang, E. (2010). A perspective on microfluidic biofuel cells. Biomicrofluidics, 4(4), 041301.

    Article  Google Scholar 

  • Lee, D.-J., Chang, J.-S., & Lai, J.-Y. (2015a). Microalgae–MFC: A mini review. Bioresource Technology, 198, 891–895.

    Google Scholar 

  • Lee, H., Yang, W., Wei, X., Fraiwan, A., & Choi, S. (2015b). A microsized MFC based biosensor for fast and sensitive detection of toxic substances in water. Paper presented at the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Portugal. https://doi.org/10.1109/MEMSYS.2015.7051020\t _blank10.1109/MEMSYS.2015.7051020

  • Lee, S. H., Ban, J. Y., Oh, C.-H., Park, H.-K., & Choi, S. (2016). A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes. Scientific Reports, 6, 28588.

    Google Scholar 

  • Li, Z., Zhang, Y., LeDuc, P. R., & Gregory, K. B. (2011). Microbial electricity generation via microfluidic flow control. Biotechnology and Bioengineering, 108(9), 2061–2069.

    Google Scholar 

  • Li, Z., Venkataraman, A., Rosenbaum, M. A., & Angenent, L. T. (2012). A laminar-flow microfluidic device for quantitative analysis of microbial electrochemical activity. ChemSusChem, 5(6), 1119–1123.

    Google Scholar 

  • Li, L., Wang, G., Chen, R., Zhu, X., Wang, H., Liao, Q., et al. (2014). Optofluidics based micro-photocatalytic fuel cell for efficient wastewater treatment and electricity generation. Lab on a Chip, 14(17), 3368–3375.

    Google Scholar 

  • Li, M., He, X., Zeng, Y., Chen, M., Zhang, Z., Yang, H., et al. (2015). Solar-microbial hybrid device based on oxygen-deficient niobium pentoxide anodes for sustainable hydrogen production. Chemical Science, 6(12), 6799–6805.

    Google Scholar 

  • Li, L., Nikiforidis, G., Leung, M. K. H., & Daoud, W. A. (2016a). Vanadium microfluidic fuel cell with novel multi-layer flow-through porous electrodes: Model, simulations and experiments. Applied Energy, 177, 729–739.

    Google Scholar 

  • Li, F., Zheng, Z., Yang, B., Zhang, X., Li, Z., & Lei, L. (2016b). A laminar-flow based microfluidic microbial three-electrode cell for biosensing. Electrochimica Acta, 199, 45–50.

    Google Scholar 

  • Li, Z., Zhang, Y., LeDuc, P. R., & Gregory, K. B. (2011a). Microbial electricity generation via microfluidic flow control. Biotechnology and Bioengineering, 108(9), 2061–2069.

    Google Scholar 

  • Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber MFC in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14), 4040–4046.

    Article  CAS  Google Scholar 

  • Mäki, A.-J., Hemmilä, S., Hirvonen, J., Girish, N. N., Kreutzer, J., Hyttinen, J., et al. (2014). Modeling and experimental characterization of pressure drop in gravity-driven microfluidic systems. ASME: Journal of Fluids Engineering, 137(2), 021105.

    Google Scholar 

  • Merrill, M. D., & Logan, B. E. (2009). Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells. Journal of Power Sources, 191(2), 203–208.

    Article  CAS  Google Scholar 

  • Mu, C., Kien, B. L., & Liwei, L. (2006). Micromachined microbial and photosynthetic fuel cells. Journal of Micromechanics and Microengineering, 16(12), 2547.

    Article  Google Scholar 

  • Mukherjee, S., Su, S., Panmanee, W., Irvin, R. T., Hassett, D. J., & Choi, S. (2013). A microliter-scale MFC array for bacterial electrogenic screening. Sensors and Actuators A: Physical, 201, 532–537.

    Article  CAS  Google Scholar 

  • Papaharalabos, G., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). A novel small scale MFC design for increased electricity generation and waste water treatment. International Journal of Hydrogen Energy, 40(11), 4263–4268.

    Article  CAS  Google Scholar 

  • Qian, F., Baum, M., Gu, Q., & Morse, D. E. (2009). A 1.5 [small micro]L MFC for on-chip bioelectricity generation. Lab on a Chip, 9(21), 3076–3081.

    Article  CAS  Google Scholar 

  • Qian, F., He, Z., Thelen, M. P., & Li, Y. (2011). A microfluidic MFC fabricated by soft lithography. Bioresource Technology, 102(10), 5836–5840.

    Article  CAS  Google Scholar 

  • Rathoure, A. K., & Pramanik, H. (2016). Electrooxidation study of methanol using H2O2 and air as mixed oxidant at cathode in air breathing microfluidic fuel cell. International Journal of Hydrogen Energy, 41(34), 15287–15294.

    Article  CAS  Google Scholar 

  • Ren, H., Lee, H.-S., & Chae, J. (2012). Miniaturizing MFCs for potential portable power sources: Promises and challenges. Microfluidics and Nanofluidics, 13(3), 353–381.

    Article  CAS  Google Scholar 

  • Rojas, J.P., Alqarni, W., Kalantan, K., Hussain, M. M., & Mink, J. (2015). Nano-watt fueling from a micro-scale MFC using black tea waste. International Conference on Nanotechnology (IEEE-NANO) (pp. 955–958).

    Google Scholar 

  • Sackmann, E. K., Fulton, A. L., & Beebe, D. J. (2014). The present and future role of microfluidics in biomedical research. Nature, 507(7491), 181–189.

    Article  CAS  Google Scholar 

  • Samiei, E., Tabrizian, M., & Hoorfar, M. (2016). A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab on a Chip, 16(13), 2376–2396.

    Article  CAS  Google Scholar 

  • Shantaram, A., Beyenal, H., Veluchamy, R. R. A., & Lewandowski, Z. (2005). Wireless sensors powered by MFCs. Environmental Science & Technology, 39(13), 5037–5042.

    Article  CAS  Google Scholar 

  • Sinton, D. (2014). Energy: The microfluidic frontier. Lab on a Chip, 14(17), 3127–3134.

    Article  CAS  Google Scholar 

  • Siu, C. P. B., & Chiao, M. (2008). A microfabricated PDMS MFC. Journal of Microelectromechanical Systems, 17(6), 1329–1341.

    Article  CAS  Google Scholar 

  • Sun, M. H., Velve Casquillas, G., Guo, S. S., Shi, J., Ji, H., Ouyang, Q., et al. (2007). Characterization of microfluidic fuel cell based on multiple laminar flow. Microelectronic Engineering, 84(5–8), 1182–1185.

    Article  CAS  Google Scholar 

  • Szollosi, A., Nguyen, Q. D., Kovacs, A. G., Fogarasi, A.-L., Kun, S., & Hegyesne-Vecseri, B. (2016). Production of low or non-alcoholic beer in MFC. Food and Bioproducts Processing, 98, 196–200.

    Article  CAS  Google Scholar 

  • Veerubhotla, R., Bandopadhyay, A., Das, D., & Chakraborty, S. (2015). Instant power generation from an air-breathing paper and pencil based bacterial bio-fuel cell. Lab on a Chip, 15(12), 2580–2583.

    Article  CAS  Google Scholar 

  • Wang, H.-Y., & Su, J.-Y. (2013). Membraneless microfluidic MFC for rapid detection of electrochemical activity of microorganism. Bioresource Technology, 145, 271–274.

    Article  CAS  Google Scholar 

  • Wang, H.-Y., Bernarda, A., Huang, C.-Y., Lee, D.-J., & Chang, J.-S. (2011). Micro-sized MFC: A mini-review. Bioresource Technology, 102(1), 235–243.

    Article  CAS  Google Scholar 

  • Wang, H., Park, J.-D., & Ren, Z. J. (2015). Practical energy harvesting for MFCs: A review. Environmental Science & Technology, 49(6), 3267–3277.

    Article  CAS  Google Scholar 

  • Xing, Y., Nourmohammadzadeh, M., Elias, J. E. M., Chan, M., Chen, Z., McGarrigle, J. J., et al. (2016). A pumpless microfluidic device driven by surface tension for pancreatic islet analysis. Biomedical Microdevices, 18(5), 1–9.

    Article  CAS  Google Scholar 

  • Yan, J., Lee, D. J., Chou, S. K., Desideri, U., Li, H., Chen, Y.-Y., et al. (2014). International conference on applied energy, ICAE2014. Fabrication of conductive microparticles as anodal electrode in microfluidic MFC. Energy Procedia, 61, 1565–1568.

    Article  Google Scholar 

  • Yang, Y., Ye, D., Li, J., Zhu, X., Liao, Q., & Zhang, B. (2015). Biofilm distribution and performance of microfluidic MFCs with different microchannel geometries. International Journal of Hydrogen Energy, 40(35), 11983–11988.

    Article  CAS  Google Scholar 

  • Yang, Y., Liu, T., Liao, Q., Ye, D., Zhu, X., Li, J., et al. (2016a). Three-dimensional nitrogen-doped Graphene Aerogel-activated carbon composite catalyst enables low-cost microfluidic MFCs with superior performance. Journal of Materials Chemistry A. doi: https://doi.org/10.1039/C6TA05002F.

  • Yang, Y., Ye, D., Li, J., Zhu, X., Liao, Q., & Zhang, B. (2016b). Microfluidic MFCs: From membrane to membrane free. Journal of Power Sources, 324, 113–125.

    Article  CAS  Google Scholar 

  • Ye, D., Yang, Y., Li, J., Zhu, X., Liao, Q., Deng, B., et al. (2013). Performance of a microfluidic MFC based on graphite electrodes. International Journal of Hydrogen Energy, 38(35), 15710–15715.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket Goel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goel, S. (2018). Microfluidic Microbial Fuel Cell: On-chip Automated and Robust Method to Generate Energy. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_12

Download citation

Publish with us

Policies and ethics