Skip to main content

Introduction

  • Chapter
  • First Online:
Microbial Fuel Cell

Abstract

Security for water and energy sources is gaining importance throughout the world. Increasing population and climate changes pose serious challenges that involve energy, water resources, land use and waste treatment issues. Throughout the world there is intense interest in evaluating and implementing alternative energy sources (Schröder 2008). Lots of research is going in quest of renewable energy sources (Chandrasekhar et al. 2015). The hydropower, biomass, wind, geothermal and solar radiation are among major sources for renewable energy generation. In recent years, Microbial Fuel Cell (MFC) technology has been emerging as one of the popular wastewater treatment-based technology to provide clean water and green energy (Pant et al. 2012). MFCs are bio-electrochemical devices where organic wastes degrade to smaller molecules, releasing electrons and protons, thereby generating electricity. MFCs can directly convert chemical energy into electrical energy through bioelectrochemical reactions utilizing microorganism or enzymatic catalysis. MFCs have several advantages as compared to the traditional fuel cells and enzymatic fuel cells. It is possible to utilize a wide range of organic or inorganic matter such as organic wastes, soil sediments as a source of fuel generation. High conversion efficiency can be achieved with such devices due to the direct or a single step conversion of substrate energy to electricity. Unlike a conventional fuel cell, MFCs can run at ambient temperature and atmospheric pressure (Du et al. 2007). In addition it can be useful for widespread application in locations lacking electrical facilities (Stams et al. 2006). MFCs have outperformed other technologies like anaerobic digester, aerated lagoon etc. (Logan 2008) with a wide array of applications as depicted in Fig. 1.1. The objective of this chapter is to give an overview of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abourached, C., Lesnik, K. L., & Liu, H. (2014). Enhanced power generation and energy conversion of sewage sludge by CEA–microbial fuel cells. Bioresource Technology, 166, 229–234.

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA). (1995). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.

    Google Scholar 

  • Bond, D. R., & Lovley, D. R. (2003). Electricity production by geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69, 1548–1555.

    Article  CAS  Google Scholar 

  • Chandrasekhar, K., & Venkata Mohan, S. (2012). Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: Effect of substrate concentration. Bioresource Technology, 110, 517–525.

    Article  CAS  Google Scholar 

  • Chandrasekhar, K., Amulya, K., & Venkata Mohan, S. (2015). Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation. Waste Management, 45, 57–65.

    Article  CAS  Google Scholar 

  • Ding, A., Yang, Y., Sun, G., & Wu, D. (2016). Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chemical Engineering Journal, 283, 260–265.

    Article  CAS  Google Scholar 

  • Dong, Y., Qu, Y., He, W., Du, Y., Liu, J., Han, X., & Feng, Y. (2015). A 90-litre stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresource Technology, 195, 66–72.

    Article  CAS  Google Scholar 

  • Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25, 464–482.

    Article  CAS  Google Scholar 

  • Feng, Y., He, W., Liu, J., Wang, X., Qu, Y., & Ren, N. (2014). A horizontal plug flow and stackable pilot microbial fuel cell for municipal wastewater treatment. Bioresource Technology, 156, 132–138.

    Article  CAS  Google Scholar 

  • Gil, G.-C., Chang, I.-S., et al. (2003). Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosensors & Bioelectronics, 18, 327–334.

    Article  CAS  Google Scholar 

  • Gonzalez del Campo, A., Lobato, J., Canizares, P., Rodrigo, M. A., & Fernandez Morales, F. J. (2013). Short-term effects of temperature and COD in a microbial fuel cell. Applied Energy, 101, 213–217.

    Article  CAS  Google Scholar 

  • Hiegemann, H., Herzer, D., et al. (2016). An integrated 45L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresource Technology, 218, 115–122.

    Article  CAS  Google Scholar 

  • Jiang, D., Curtis, M., Troop, E., et al. (2011). A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. International Journal of Hydrogen Energy, 36, 876–884.

    Article  CAS  Google Scholar 

  • Kaewkannetra, P., Chiwes, W., & Chiu, T. Y. (2011). Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology. Fuel, 90, 2746–2750.

    Article  CAS  Google Scholar 

  • Khilari, S., Pandit, S., Ghangrekar, M. M., Pradhan, D., & Das, D. (2013). Graphene oxide-impregnated PVA–STA composite polymer electrolyte membrane separator for power generation in a single-chambered microbial fuel cell. Industrial and Engineering Chemistry Research, 52, 11597–11606.

    Article  CAS  Google Scholar 

  • Kim, Y., & Logan, B. E. (2013). Microbial desalination cells for energy production and desalination. Desalination, 308, 122–130.

    Article  CAS  Google Scholar 

  • Kim, B. H., Chang, I. S., Gil, G. C., Park, H. S., & Kim, H. J. (2003). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters, 25, 541–545.

    Google Scholar 

  • Leong, J. X., Daud, W. R. W., Ghasemi, M., Liew, K. B., & Ismail, M. (2013). Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review. Renewable and Sustainable Energy Reviews, 28, 575–587.

    Article  CAS  Google Scholar 

  • Logan, B. E. (2008). Microbial fuel cells (1st ed.). Hoboken: Wiley-Interscience. https://www.engr.psu.edu/ce/enve/logan/publications/2010-Logan-AMB.pdf

  • Logan, B. E. (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Appllied Microbiology and Biotechnology, 85(6), 1665–1671.

    Google Scholar 

  • Logan, B. E. (2012). Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem, 5, 988–994.

    Article  CAS  Google Scholar 

  • Montpart, N., Rago, L., Baeza, J., & Guisasola, A. (2014). Hydrogen production in single chamber microbial electrolysis cells with different complex substrates. Water Research, 68C, 601–615.

    Google Scholar 

  • Nevin, K. P., Hensley, S. A., et al. (2011). Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Applied and Environmental Microbiology, 77, 2882–2886.

    Article  CAS  Google Scholar 

  • Oh, S.-E., Yoon, J. Y., Gurung, A., & Kim, D.-J. (2014). Evaluation of electricity generation from ultrasonic and heat/alkaline pretreatment of different sludge types using microbial fuel cells. Bioresource Technology, 165, 21–26.

    Article  CAS  Google Scholar 

  • Pandit, S., Nayak, B. K., & Das, D. (2012). Microbial carbon capture cell using cyanobacteria for simultaneous power generation, carbon dioxide sequestration and wastewater treatment. Bioresource Technology, 107, 97–102.

    Article  CAS  Google Scholar 

  • Pandit, S., Khilari, S., Roy, S., Pradhan, D., & Das, D. (2014). Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered microbial fuel cell: Effect of different anodic operating conditions. Bioresource Technology, 166, 451–457.

    Article  CAS  Google Scholar 

  • Pant, D., Singh, A., Van Bogaert, G., et al. (2012). Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Advances, 2, 1248–1263.

    Article  CAS  Google Scholar 

  • Qiao, Y., Bao, S.-J., & Li, C. M. (2010). Electrocatalysis in microbial fuel cells – From electrode material to direct electrochemistry. Energy & Environmental Science, 3, 544.

    Article  CAS  Google Scholar 

  • Rabaey, K., & Keller, J. (2008). Microbial fuel cell cathodes: From bottleneck to prime opportunity? Water Science and Technology, 57, 655.

    Article  CAS  Google Scholar 

  • Rismani-Yazdi, H., Carver, S. M., Christy, A. D., & Tuovinen, O. H. (2008). Cathodic limitations in microbial fuel cells: An overview. Journal of Power Sources, 180, 683–694.

    Article  CAS  Google Scholar 

  • Schröder, U. (2007). Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Physical Chemistry Chemical Physics, 9, 2619–2629.

    Google Scholar 

  • Schröder, U. (2008). From wastewater to hydrogen: Biorefineries based on microbial fuel-cell technology. ChemSusChem, 1, 281–282.

    Article  Google Scholar 

  • Sevda, S., Dominguez-Benetton, X., Vanbroekhoven, K., et al. (2013). High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Applied Energy, 105, 194–206.

    Article  CAS  Google Scholar 

  • Sharma, M., Aryal, N., Sarma, P. M., et al. (2013a). Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone. Chemical Communications (Cambridge), 49, 6495–6497.

    Article  CAS  Google Scholar 

  • Sharma, M., Jain, P., Varanasi, J. L., Lal, B., et al. (2013b). Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode. Bioresource Technology, 150, 172–180.

    Article  CAS  Google Scholar 

  • Sherafatmand, M., & Ng, H. Y. (2015). Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresource Technology, 195, 122–130.

    Article  CAS  Google Scholar 

  • Stams, A. J. M., de Bok, F. A. M., et al. (2006). Exocellular electron transfer in anaerobic microbial communities. Environmental Microbiology, 8, 371–382.

    Article  CAS  Google Scholar 

  • Strik, D. P. B. T. B., Timmers, R. A., et al. (2011). Microbial solar cells: Applying photosynthetic and electrochemically active organisms. Trends in Biotechnology, 29, 41–49.

    Article  CAS  Google Scholar 

  • Tao, H.-C., Zhang, L.-J., Gao, Z.-Y., & Wu, W.-M. (2011). Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresource Technology, 102, 10334–10339.

    Article  CAS  Google Scholar 

  • Umbuzeiro, G. A., Freeman, H. S., Warren, S. H., Oliveira, D. P., Terao, Y., Watanabe, T., & Claxton, L. D. (2005). The contribution of azo dyes to the mutagenic activity of the Cristais River. Chemosphere, 60(1), 55–64.

    Google Scholar 

  • Varanasi, J. L., Nayak, A. K., Sohn, Y., Pradhan, D., & Das, D. (2016). Improvement of power generation of microbial fuel cell by integrating tungsten oxide electrocatalyst with pure or mixed culture biocatalysts. Electrochimica Acta, 199, 154–163.

    Article  CAS  Google Scholar 

  • Venkata Mohan, S., Velvizhi, G., Annie Modestra, J., & Srikanth, S. (2014). Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable and Sustainable Energy Reviews, 40, 779–797.

    Article  CAS  Google Scholar 

  • Wang, H., Luo, H., Fallgren, P. H., Jin, S., & Ren, Z. J. (2015). Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnology Advances, 33, 317–334.

    Article  Google Scholar 

  • Yang, F., Ren, L., Pu, Y., & Logan, B. E. (2013). Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells. Bioresource Technology, 128, 784–787.

    Article  CAS  Google Scholar 

  • Zhang, F., Chen, M., Zhang, Y., & Zeng, R. J. (2012). Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration. Journal of Membrane Science, 417–418, 28–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Capital Publishing Company, New Delhi, India

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, D. (2018). Introduction. In: Das, D. (eds) Microbial Fuel Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-66793-5_1

Download citation

Publish with us

Policies and ethics