Skip to main content

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 2515 Accesses

Abstract

Catheter angiography is still considered the gold standard for imaging cerebral vasculature, and is the topic of this chapter. Diagnostic angiography is also typically done as the first step during neurointerventional procedures. Mastery of diagnostic angiography is a prerequisite for neurointerventional training. Training standards formulated by the American Society of Interventional and Therapeutic Neuroradiology (ASITN), the Joint Section of Cerebrovascular Neurosurgery, and the American Society of Neuroradiology (ASNR) recommend the performance of at least 100 diagnostic angiograms before entering neuroendovascular training (Iserson, J Emerg Med, 5:45–48, 1987). This handbook authors’ preference, however, is for a neurointerventionalist-in-training to perform at least 250 diagnostic cerebral angiograms prior to becoming the lead operator in neurointerventional cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Higashida RT, Hopkins LN, Berenstein A, Halbach VV, Kerber C. Program requirements for residency/fellowship education in neuroendovascular surgery/interventional neuroradiology: a special report on graduate medical education. AJNR Am J Neuroradiol. 2000;21:1153–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Haschek E, Lindenthal OT. Ein Beitrag zur praktischen Verwerthung der Photographie nach Röntgen. Wien Klin Wschr. 1896;9:63–4.

    Google Scholar 

  3. Krayenbühl H. History of cerebral angiography and its development since Egaz Moniz. Egas Moniz Centenary: Scientific Reports. Lisbon: Comissao Executiva das Comemoracoes do Centenario do Nascimento do Prof. Egas Moniz; 1977. p. 63–74.

    Google Scholar 

  4. Bull JW. The history of neuroradiology. Proc R Soc Med. 1970;63:637–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Norlén E. Importance of angiography in surgery of intracranial vascular lesions. Egas Moniz Centenary: Scientific Reports. Lisbon: Comissao Executiva das Comemoracoes do Centenario do Nascimento do Prof. Egas Moniz; 1977. p. 31–9.

    Google Scholar 

  6. Lima A. Egas Moniz 1874–1955. Surg Neurol. 1973;1:247–8.

    CAS  PubMed  Google Scholar 

  7. Dámasio AR. Egas Moniz, pioneer of angiography and leucotomy. Mt Sinai J Med. 1975;42:502–13.

    PubMed  Google Scholar 

  8. Moniz EL. L’angiographie cérébrale. Paris: Masson & Cie; 1934.

    Google Scholar 

  9. Dagi TF. Neurosurgery and the introduction of cerebral angiography. Neurosurg Clin N Am. 2001;12:145–53. ix

    CAS  PubMed  Google Scholar 

  10. Ligon BL. The mystery of angiography and the “unawarded” Nobel Prize: Egas Moniz and Hans Christian Jacobaeus. Neurosurgery. 1998;43:602–11.

    CAS  PubMed  Google Scholar 

  11. Sheldon P. A special needle for percutaneous vertebral angiography. Br J Radiol. 1956;29:231–2.

    CAS  PubMed  Google Scholar 

  12. Gould PL, Peyton WT, French LA. Vertebral angiography by retrograde injection of the brachial artery. J Neurosurg. 1955;12:369–74.

    CAS  PubMed  Google Scholar 

  13. Kuhn RA. Brachial cerebral angiography. J Neurosurg. 1960;17:955–71.

    CAS  PubMed  Google Scholar 

  14. Hinck VC, Judkins MP, Paxton HD. Simplified selective femorocerebral angiography. Radiology. 1967;89:1048–52.

    CAS  PubMed  Google Scholar 

  15. Commission TJ. Requirements for comprehensive stroke center certification. Oakbrook Terrace, IL. 2014.

    Google Scholar 

  16. Citron SJ, Wallace RC, Lewis CA, et al. Quality improvement guidelines for adult diagnostic neuroangiography: cooperative study between ASITN, ASNR, and SIR. J Vasc Interv Radiol. 2003;14:S257–62.

    PubMed  Google Scholar 

  17. Mentzel H-J, Blume J, Malich A, Fitzek C, Reichenbach JR, Kaiser WA. Cortical blindness after contrast-enhanced CT: complication in a patient with diabetes insipidus. AJNR Am J Neuroradiol. 2003;24:1114–6.

    PubMed  PubMed Central  Google Scholar 

  18. Saigal G, Bhatia R, Bhatia S, Wakhloo AK. MR findings of cortical blindness following cerebral angiography: is this entity related to posterior reversible leukoencephalopathy? AJNR Am J Neuroradiol. 2004;25:252–6.

    PubMed  PubMed Central  Google Scholar 

  19. Yildiz A, Yencilek E, Apaydin FD, Duce MN, Ozer C, Atalay A. Transient partial amnesia complicating cardiac and peripheral arteriography with nonionic contrast medium. Eur Radiol. 2003;13(Suppl 4):L113–5.

    PubMed  Google Scholar 

  20. Willinsky RA, Taylor SM, TerBrugge K, Farb RI, Tomlinson G, Montanera W. Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology. 2003;227:522–8.

    PubMed  Google Scholar 

  21. Young B, Moore WS, Robertson JT, et al. An analysis of perioperative surgical mortality and morbidity in the asymptomatic carotid atherosclerosis study. ACAS Investigators. Asymptomatic Carotid Artheriosclerosis Study. Stroke. 1996;27:2216–24.

    CAS  PubMed  Google Scholar 

  22. Heiserman JE, Dean BL, Hodak JA, et al. Neurologic complications of cerebral angiography. AJNR Am J Neuroradiol. 1994;15:1401–7. discussion 8-11

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hankey GJ, Warlow CP, Molyneux AJ. Complications of cerebral angiography for patients with mild carotid territory ischaemia being considered for carotid endarterectomy. J Neurol Neurosurg Psychiatry. 1990;53:542–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cloft HJ, Joseph GJ, Dion JE. Risk of cerebral angiography in patients with subarachnoid hemorrhage, cerebral aneurysm, and arteriovenous malformation: a meta-analysis. Stroke. 1999;30:317–20.

    CAS  PubMed  Google Scholar 

  25. Mani RL, Eisenberg RL. Complications of catheter cerebral arteriography: analysis of 5,000 procedures. III. Assessment of arteries injected, contrast medium used, duration of procedure, and age of patient. AJR Am J Roentgenol. 1978;131:871–4.

    CAS  PubMed  Google Scholar 

  26. Dion JE, Gates PC, Fox AJ, Barnett HJ, Blom RJ. Clinical events following neuroangiography: a prospective study. Stroke. 1987;18:997–1004.

    CAS  PubMed  Google Scholar 

  27. Kelkar PS, Fleming JB, Walters BC, Harrigan MR. Infection risk in neurointervention and cerebral angiography. Neurosurgery. 2013;72:327–31.

    PubMed  Google Scholar 

  28. Katholi RE, Taylor GJ, Woods WT, et al. Nephrotoxicity of nonionic low-osmolality versus ionic high-osmolality contrast media: a prospective double-blind randomized comparison in human beings. Radiology. 1993;186:183–7.

    CAS  PubMed  Google Scholar 

  29. Barrett BJ, Parfrey PS, Vavasour HM, O’Dea F, Kent G, Stone E. A comparison of nonionic, low-osmolality radiocontrast agents with ionic, high-osmolality agents during cardiac catheterization. N Engl J Med. 1992;326:431–6.

    CAS  PubMed  Google Scholar 

  30. Barrett BJ, Parfrey PS, McDonald JR, Hefferton DM, Reddy ER, McManamon PJ. Nonionic low-osmolality versus ionic high-osmolality contrast material for intravenous use in patients perceived to be at high risk: randomized trial. Radiology. 1992;183:105–10.

    CAS  PubMed  Google Scholar 

  31. Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993;188:171–8.

    CAS  PubMed  Google Scholar 

  32. Rosovsky MA, Rusinek H, Berenstein A, Basak S, Setton A, Nelson PK. High-dose administration of nonionic contrast media: a retrospective review. Radiology. 1996;200:119–22.

    CAS  PubMed  Google Scholar 

  33. Moran CJ, Milburn JM, Cross DT III, Derdeyn CP, Dobbie TK, Littenberg B. Randomized controlled trial of sheaths in diagnostic neuroangiography. Radiology. 2001;218:183–7.

    CAS  PubMed  Google Scholar 

  34. Kiyosue H, Okahara M, Nagatomi H, Nakamura T, Tanoue S, Mori H. 3.3F catheter/sheath system for use in diagnostic neuroangiography. AJNR Am J Neuroradiol. 2002;23:711–5.

    PubMed  PubMed Central  Google Scholar 

  35. Weinbroum AA, Szold O, Ogorek D, Flaishon R. The midazolam-induced paradox phenomenon is reversible by flumazenil. Epidemiology, patient characteristics and review of the literature. Eur J Anaesthesiol. 2001;18:789–97.

    CAS  PubMed  Google Scholar 

  36. Mancuso CE, Tanzi MG, Gabay M. Paradoxical reactions to benzodiazepines: literature review and treatment options. Pharmacotherapy. 2004;24:1177–85.

    CAS  PubMed  Google Scholar 

  37. Thurston TA, Williams CG, Foshee SL. Reversal of a paradoxical reaction to midazolam with flumazenil. Anesth Analg. 1996;83:192.

    CAS  PubMed  Google Scholar 

  38. Iserson KV. The origins of the gauge system for medical equipment. J Emerg Med. 1987;5:45–8.

    CAS  PubMed  Google Scholar 

  39. Markus H, Loh A, Israel D, Buckenham T, Clifton A, Brown MM. Microscopic air embolism during cerebral angiography and strategies for its avoidance. Lancet. 1993;341:784–7.

    CAS  PubMed  Google Scholar 

  40. Bendszus M, Koltzenburg M, Bartsch AJ, et al. Heparin and air filters reduce embolic events caused by intra-arterial cerebral angiography: a prospective, randomized trial. Circulation. 2004;110:2210–5.

    CAS  PubMed  Google Scholar 

  41. Dexter F, Hindman BJ. Recommendations for hyperbaric oxygen therapy of cerebral air embolism based on a mathematical model of bubble absorption. Anesth Analg. 1997;84:1203–7.

    CAS  PubMed  Google Scholar 

  42. Branger AB, Lambertsen CJ, Eckmann DM. Cerebral gas embolism absorption during hyperbaric therapy: theory. J Appl Physiol. 2001;90:593–600.

    CAS  PubMed  Google Scholar 

  43. Calvert JW, Cahill J, Zhang JH. Hyperbaric oxygen and cerebral physiology. Neurol Res. 2007;29:132–41.

    CAS  PubMed  Google Scholar 

  44. LeDez KM, Zbitnew G. Hyperbaric treatment of cerebral air embolism in an infant with cyanotic congenital heart disease. Can J Anaesth. 2005;52:403–8.

    PubMed  Google Scholar 

  45. Bitterman H, Melamed Y. Delayed hyperbaric treatment of cerebral air embolism. Isr J Med Sci. 1993;29:22–6.

    CAS  PubMed  Google Scholar 

  46. Blanc P, Boussuges A, Henriette K, Sainty JM, Deleflie M. Iatrogenic cerebral air embolism: importance of an early hyperbaric oxygenation. Intensive Care Med. 2002;28:559–63.

    CAS  PubMed  Google Scholar 

  47. Shrinivas VG, Sankarkumar R, Rupa S. Retrograde cerebral perfusion for treatment of air embolism after valve surgery. Asian Cardiovasc Thorac Ann. 2004;12:81–2.

    Google Scholar 

  48. Gregoric ID, Myers TJ, Kar B, et al. Management of air embolism during HeartMate XVE exchange. Tex Heart Inst J. 2007;34:19–22.

    PubMed  PubMed Central  Google Scholar 

  49. Hughes DG, Patel U, Forbes WS, Jones AP. Comparison of hand injection with mechanical injection for digital subtraction selective cerebral angiography. Br J Radiol. 1994;67:786–9.

    CAS  PubMed  Google Scholar 

  50. Haughton VM, Rosenbaum AE, Baker RA, Plaistowe RL. Lateral projections with inclined head for angiography of basal cerebral aneurysms. Radiology. 1975;116:220–2.

    CAS  PubMed  Google Scholar 

  51. Elisevich K, Cunningham IA, Assis L. Size estimation and magnification error in radiographic imaging: implications for classification of arteriovenous malformations. AJNR Am J Neuroradiol. 1995;16:531–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Levitt MR, Osbun JW, Ghodke BV, Kim LJ. Radiation dose reduction in neuroendovascular procedures. World Neurosurg. 2013;80:681–2.

    PubMed  Google Scholar 

  53. Kahn EN, Gemmete JJ, Chaudhary N, et al. Radiation dose reduction during neurointerventional procedures by modification of default settings on biplane angiography equipment. J Neurointerv Surg. 2016;8:819–23.

    PubMed  Google Scholar 

  54. Schneider T, Wyse E, Pearl MS. Analysis of radiation doses incurred during diagnostic cerebral angiography after the implementation of dose reduction strategies. J Neurointerv Surg. 2017;9:384–8.

    PubMed  Google Scholar 

  55. Gedikoglu M, Oguzkurt L, Gur S, Andic C, Sariturk C, Ozkan U. Comparison of ultrasound guidance with the traditional palpation and fluoroscopy method for the common femoral artery puncture. Catheter Cardiovasc Interv. 2013;82:1187–92.

    PubMed  Google Scholar 

  56. Kurisu K, Osanai T, Kazumata K, et al. Ultrasound-guided femoral artery access for minimally invasive neuro-intervention and risk factors for access site hematoma. Neurol Med Chir (Tokyo). 2016;56:745–52.

    PubMed  Google Scholar 

  57. Fischer TH, Connolly R, Thatte HS, Schwaitzberg SS. Comparison of structural and hemostatic properties of the poly-N-acetyl glucosamine Syvek patch with products containing chitosan. Microsc Res Tech. 2004;63:168–74.

    CAS  PubMed  Google Scholar 

  58. Vlasic W, Almond D, Massel D. Reducing bedrest following arterial puncture for coronary interventional procedures—impact on vascular complications: the BAC Trial. J Invasive Cardiol. 2001;13:788–92.

    CAS  PubMed  Google Scholar 

  59. Hoglund J, Stenestrand U, Todt T, Johansson I. The effect of early mobilisation for patient undergoing coronary angiography; a pilot study with focus on vascular complications and back pain. Eur J Cardiovasc Nurs. 2011;10:130–6.

    PubMed  Google Scholar 

  60. Nikolsky E, Mehran R, Halkin A, et al. Vascular complications associated with arteriotomy closure devices in patients undergoing percutaneous coronary procedures: a meta-analysis. J Am Coll Cardiol. 2004;44:1200–9.

    PubMed  Google Scholar 

  61. Applegate RJ, Rankin KM, Little WC, Kahl FR, Kutcher MA. Restick following initial Angioseal use. Catheter Cardiovasc Interv. 2003;58:181–4.

    PubMed  Google Scholar 

  62. Medical SJ. Restick following initial Angio-seal device use shown to be safe. Minnetonka, MN. 2008.

    Google Scholar 

  63. Fields JD, Liu KC, Lee DS, et al. Femoral artery complications associated with the mynx closure device. AJNR Am J Neuroradiol. 2010;31:1737–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Azmoon S, Pucillo AL, Aronow WS, et al. Vascular complications after percutaneous coronary intervention following hemostasis with the Mynx vascular closure device versus the AngioSeal vascular closure device. J Invasive Cardiol. 2010;22:175–8.

    PubMed  Google Scholar 

  65. Uchino A. Selective catheterization of the brachiocephalic arteries via the right brachial artery. Neuroradiology. 1988;30:524–7.

    CAS  PubMed  Google Scholar 

  66. Levy EI, Boulos AS, Fessler RD, et al. Transradial cerebral angiography: an alternative route. Neurosurgery. 2002;51:335–40; discussion 40–2.

    PubMed  Google Scholar 

  67. Benit E, Vranckx P, Jaspers L, Jackmaert R, Poelmans C, Coninx R. Frequency of a positive modified Allen’s test in 1,000 consecutive patients undergoing cardiac catheterization. Catheter Cardiovasc Diagn. 1996;38(4):352.

    CAS  Google Scholar 

  68. Hildick-Smith DJ, Ludman PF, Lowe MD, et al. Comparison of radial versus brachial approaches for diagnostic coronary angiography when the femoral approach is contraindicated. Am J Cardiol. 1998;81:770–2.

    CAS  PubMed  Google Scholar 

  69. Stewart WJ, McSweeney SM, Kellett MA, Faxon DP, Ryan TJ. Increased risk of severe protamine reactions in NPH insulin-dependent diabetics undergoing cardiac catheterization. Circulation. 1984;70:788–92.

    CAS  PubMed  Google Scholar 

  70. Cobb CA 3rd, Fung DL. Shock due to protamine hypersensitivity. Surg Neurol. 1982;17:245–6.

    PubMed  Google Scholar 

  71. Measurements NCoRPa. Recommendations on limits for exposure to ionizing radiation (NCRP report no. 91). 1987.

    Google Scholar 

  72. Piper J. Fetal toxicity of common neurosurgical drugs. In: Loftus C, editor. Neurosurgical aspects of pregancy. Park Ridge, IL: American Association of Neurological Surgeons; 1996. p. 1–20.

    Google Scholar 

  73. Kal HB, Struikmans H. Pregnancy and medical irradiation; summary and conclusions from the International Commission on Radiological Protection, Publication 84. Ned Tijdschr Geneeskd. 2002;146:299–303.

    CAS  PubMed  Google Scholar 

  74. Dalessio D. Neurologic diseases. In: Burrow G, Ferris T, editors. Medical complications during pregnancy. Philadelphia: W.B. Saunders; 1982. p. 435–47.

    Google Scholar 

  75. Dias MS, Sekhar LN. Intracranial hemorrhage from aneurysms and arteriovenous malformations during pregnancy and the puerperium. Neurosurgery. 1990;27:855–65; discussion 65–6.

    CAS  PubMed  Google Scholar 

  76. Morcos SK. Contrast media-induced nephrotoxicity—questions and answers. Br J Radiol. 1998;71:357–65.

    CAS  PubMed  Google Scholar 

  77. Barrett BJ, Parfrey PS, editors. Clinical aspects of acute renal failure following use of radiocontrast agents. New York: Marcel Dekker; 1992.

    Google Scholar 

  78. Solomon R. Contrast-medium-induced acute renal failure. Kidney Int. 1998;53:230–42.

    CAS  PubMed  Google Scholar 

  79. Rudnick MR, Goldfarb S, Wexler L, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int. 1995;47:254–61.

    CAS  PubMed  Google Scholar 

  80. Porter GA. Radiocontrast-induced nephropathy. Nephrol Dial Transplant. 1994;9(Suppl 4):146–56.

    PubMed  Google Scholar 

  81. Sharma SK, Kini A. Effect of nonionic radiocontrast agents on the occurrence of contrast-induced nephropathy in patients with mild-moderate chronic renal insufficiency: pooled analysis of the randomized trials. Catheter Cardiovasc Interv. 2005;65:386–93.

    PubMed  Google Scholar 

  82. Cohan RH, Ellis JH. Iodinated contrast material in uroradiology. Choice of agent and management of complications. Urol Clin North Am. 1997;24:471–91.

    CAS  PubMed  Google Scholar 

  83. Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000;343:180–4.

    CAS  PubMed  Google Scholar 

  84. Mueller C, Buerkle G, Buettner HJ, et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med. 2002;162:329–36.

    CAS  PubMed  Google Scholar 

  85. Nussbaum ES, Casey SO, Sebring LA, Madison MT. Use of gadolinium as an intraarterial contrast agent in digital subtraction angiography of the cervical carotid arteries and intracranial circulation. Technical note. J Neurosurg. 2000;92:881–3.

    CAS  PubMed  Google Scholar 

  86. Arat A, Cekirge HS, Saatci I. Gadodiamide as an alternative contrast medium in cerebral angiography in a patient with sensitivity to iodinated contrast medium. Neuroradiology. 2000;42:34–7; discussion 7–9.

    CAS  PubMed  Google Scholar 

  87. Natalin RA, Prince MR, Grossman ME, Silvers D, Landman J. Contemporary applications and limitations of magnetic resonance imaging contrast materials. J Urol. 2010;183:27–33.

    PubMed  Google Scholar 

  88. Marenzi G, Marana I, Lauri G, et al. The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. N Engl J Med. 2003;349:1333–40.

    CAS  PubMed  Google Scholar 

  89. Parfrey PS, Griffiths SM, Barrett BJ, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med. 1989;320:143–9.

    CAS  PubMed  Google Scholar 

  90. Schwab SJ, Hlatky MA, Pieper KS, et al. Contrast nephrotoxicity: a randomized controlled trial of a nonionic and an ionic radiographic contrast agent. N Engl J Med. 1989;320:149–53.

    CAS  PubMed  Google Scholar 

  91. Huber W, Huber T, Baum S, et al. Sodium bicarbonate prevents contrast-induced nephropathy in addition to theophylline: a randomized controlled trial. Medicine (Baltimore). 2016;95:e3720.

    CAS  PubMed  Google Scholar 

  92. Wiholm BE, Myrhed M. Metformin-associated lactic acidosis in Sweden 1977-1991. Eur J Clin Pharmacol. 1993;44:589–91.

    CAS  PubMed  Google Scholar 

  93. Manual on Contrast Media Version 10. 5.0 ed. Reston: American College of Radiology. 2010.

    Google Scholar 

  94. Lalau JD, Race JM. Lactic acidosis in metformin therapy: searching for a link with metformin in reports of ‘metformin-associated lactic acidosis’. Diabetes Obes Metab. 2001;3:195–201.

    CAS  PubMed  Google Scholar 

  95. Thomsen HS, Bush WH Jr. Adverse effects of contrast media: incidence, prevention and management. Drug Saf. 1998;19:313–24.

    CAS  PubMed  Google Scholar 

  96. Davenport MS, Cohan RH, Caoili EM, Ellis JH. Repeat contrast medium reactions in premedicated patients: frequency and severity. Radiology. 2009;253:372–9.

    PubMed  Google Scholar 

  97. Horowitz MB, Dutton K, Purdy PD. Assessment of complication types and rates related to diagnostic angiography and interventional N euroradiologic procedures. A four year review (1993–1996). Interv Neuroradiol. 1998;4:27–37.

    CAS  PubMed  Google Scholar 

  98. Leonardi M, Cenni P, Simonetti L, Raffi L, Battaglia S. Retrospective Study of Complications Arising during Cerebral and Spinal Diagnostic Angiography from 1998 to 2003. Interv Neuroradiol. 2005;11:213–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Dawkins AA, Evans AL, Wattam J, et al. Complications of cerebral angiography: a prospective analysis of 2,924 consecutive procedures. Neuroradiology. 2007;49(9):753.

    CAS  PubMed  Google Scholar 

  100. Fifi JT, Meyers PM, Lavine SD, et al. Complications of modern diagnostic cerebral angiography in an academic medical center. J Vasc Interv Radiol. 2009;20:442–7.

    PubMed  Google Scholar 

  101. Bettmann MA, Heeren T, Greenfield A, Goudey C. Adverse events with radiographic contrast agents: results of the SCVIR Contrast Agent Registry. Radiology. 1997;203:611–20.

    CAS  PubMed  Google Scholar 

  102. Osborn AG. Diagnostic cerebral angiography. 2nd ed. Philadelphia: Lippincott Williams and Wilkins; 1999.

    Google Scholar 

  103. Dewachter P, Trechot P, Mouton-Faivre C. “Iodine allergy”: point of view. Ann Fr Anesth Reanim. 2005;24:40–52.

    CAS  PubMed  Google Scholar 

  104. Lasser EC, Berry CC, Mishkin MM, Williamson B, Zheutlin N, Silverman JM. Pretreatment with corticosteroids to prevent adverse reactions to nonionic contrast media. AJR Am J Roentgenol. 1994;162:523–6.

    CAS  PubMed  Google Scholar 

  105. Freed KS, Leder RA, Alexander C, DeLong DM, Kliewer MA. Breakthrough adverse reactions to low-osmolar contrast media after steroid premedication. AJR Am J Roentgenol. 2001;176:1389–92.

    CAS  PubMed  Google Scholar 

  106. Sakamoto S, Eguchi K, Shibukawa M, et al. Cerebral angiography using gadolinium as an alternative contrast medium in a patient with severe allergy to iodinated contrast medium. Hiroshima J Med Sci. 2010;59:15–6.

    PubMed  Google Scholar 

  107. Kalsch H, Kalsch T, Eggebrecht H, Konorza T, Kahlert P, Erbel R. Gadolinium-based coronary angiography in patients with contraindication for iodinated x-ray contrast medium: a word of caution. J Interv Cardiol. 2008;21:167–74.

    CAS  PubMed  Google Scholar 

  108. Cohan RH, Leder RA, Ellis JH. Treatment of adverse reactions to radiographic contrast media in adults. Radiol Clin N Am. 1996;34:1055–76.

    CAS  PubMed  Google Scholar 

  109. Tang G, Cawley CM, Dion JE, Barrow DL. Intraoperative angiography during aneurysm surgery: a prospective evaluation of efficacy. J Neurosurg. 2002;96:993–9.

    PubMed  Google Scholar 

  110. Chiang VL, Gailloud P, Murphy KJ, Rigamonti D, Tamargo RJ. Routine intraoperative angiography during aneurysm surgery. J Neurosurg. 2002;96:988–92.

    PubMed  Google Scholar 

  111. Nanda A, Willis BK, Vannemreddy PS. Selective intraoperative angiography in intracranial aneurysm surgery: intraoperative factors associated with aneurysmal remnants and vessel occlusions. Surg Neurol. 2002;58:309–14; discussion 14–5.

    PubMed  Google Scholar 

  112. Lee MC, Macdonald RL. Intraoperative cerebral angiography: superficial temporal artery method and results. Neurosurgery. 2003;53:1067–74; discussion 74–5.

    PubMed  Google Scholar 

  113. Fung E, Ganesan V, Cox TS, Chong WK, Saunders DE. Complication rates of diagnostic cerebral arteriography in children. Pediatr Radiol. 2005;35:1174–7.

    PubMed  Google Scholar 

  114. Vucevic M, Tehan B, Gamlin F, Berridge JC, Boylan M. The SMART needle. A new Doppler ultrasound-guided vascular access needle. Anaesthesia. 1994;49:889–91.

    CAS  PubMed  Google Scholar 

  115. Koenigsberg RA, Wysoki M, Weiss J, Faro SH, Tsai FY. Risk of clot formation in femoral arterial sheaths maintained overnight for neuroangiographic procedures. AJNR Am J Neuroradiol. 1999;20:297–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Dix JE, McNulty BJ, Kallmes DF. Frequency and significance of a small distal ICA in carotid artery stenosis. AJNR Am J Neuroradiol. 1998;19:1215–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bjorkesten G, Halonen V. Incidence of intracranial vascular lesions in patients with subarachnoid hemorrhage investigated by four-vessel angiography. J Neurosurg. 1965;23:29–32.

    Google Scholar 

  118. Marks MP, Lane B, Steinberg GK, Snipes GJ. Intranidal aneurysms in cerebral arteriovenous malformations: evaluation and endovascular treatment. Radiology. 1992;183:355–60.

    CAS  PubMed  Google Scholar 

  119. Garcia-Monaco R, Rodesch G, Alvarez H, Iizuka Y, Hui F, Lasjaunias P. Pseudoaneurysms within ruptured intracranial arteriovenous malformations: diagnosis and early endovascular management. AJNR Am J Neuroradiol. 1993;14:315–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Cure JK. Personal communication. Birmingham: Alabama; 2007.

    Google Scholar 

  121. Lasjaunias PL, Landrieu P, Rodesch G, et al. Cerebral proliferative angiopathy: clinical and angiographic description of an entity different from cerebral AVMs. Stroke. 2008;39:878–85.

    PubMed  Google Scholar 

  122. Huber P. A technical contribution of the exact angiographic localization of carotid cavernous fistulas. Neuroradiology. 1976;10:239–41.

    CAS  PubMed  Google Scholar 

  123. Mehringer CM, Hieshima GB, Grinnell VS, Tsai F, Pribram HF. Improved localization of carotid cavernous fistula during angiography. AJNR Am J Neuroradiol. 1982;3:82–4.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrigan, M.R., Deveikis, J.P. (2018). Diagnostic Cerebral Angiography. In: Handbook of Cerebrovascular Disease and Neurointerventional Technique. Contemporary Medical Imaging. Humana, Cham. https://doi.org/10.1007/978-3-319-66779-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66779-9_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-66777-5

  • Online ISBN: 978-3-319-66779-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics