Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 433 Accesses

Abstract

An overview of the goals, content and context of the thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Typical thermodynamic parameters for materials include temperature, pressure, and chemical potential. Alternatively, we can replace any of these parameters with volume (pressure), entropy (temperature), and the number of particles (chemical potential), to match the experimental situation.

References

  1. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  2. E. Fermi, J. R. Pasta, S.M. Ulam, Studies of nonlinear problems. LASL Report LA-1940 (1955)

    Google Scholar 

  3. B.J. Alder, T. Wainwright, Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, A405 (1964)

    Article  ADS  Google Scholar 

  5. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Computational Science Series (Elsevier Science, 2001)

    Google Scholar 

  6. M. Tuckerman, Statistical Mechanics and Molecular Simulations (Oxford University Press, 2008)

    Google Scholar 

  7. J. Skilling, Nested sampling. AIP Conf. Proc. 735, 395 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Skilling, Nested sampling for general Bayesian computation. Bayesian Anal. 1, 833 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Murray, Advances in Markov chain Monte Carlo methods. Ph.D. thesis, Gatsby Computational Neuroscience Unit, University College London, 2007

    Google Scholar 

  10. F. Feroz, M. Hobson, M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601 (2009)

    Article  ADS  Google Scholar 

  11. L.B. Pártay, A.P. Bartók, G. Csányi, Efficient sampling of atomic congurational spaces. J. Phys. Chem. B 114, 10502 (2010)

    Article  Google Scholar 

  12. S. Martiniani, J.D. Stevenson, D.J. Wales, D. Frenkel, Superposition enhanced nested sampling. Phys. Rev. X 4, 031034 (2014)

    Google Scholar 

  13. S.O. Nielsen, Nested sampling in the canonical ensemble: direct calculation of the partition function from NVT trajectories. J. Chem. Phys. 139, 124104 (2013)

    Article  ADS  Google Scholar 

  14. N.S. Burkoff, C. Várnai, S.A. Wells, D.L. Wild, Exploring the energy landscapes of protein folding simulations with Bayesian computation. Biophys. J. 102, 878 (2012)

    Article  ADS  Google Scholar 

  15. L.B. Pártay, A.P. Bartók, G. Csányi, Nested sampling for materials: The case of hard spheres. Phys. Rev. E 89, 022302 (2014)

    Article  Google Scholar 

  16. B.J. Brewer, L.B. Pártay, G. Csányi, Diffusive nested sampling. Stat. Comput. 21, 649 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Do, R.J. Wheatley, Density of states partitioning method for calculating the free energy of solids. J. Chem. Theory Comput. 9, 165 (2012)

    Article  Google Scholar 

  18. H. Do, J.D. Hirst, R.J. Wheatley, Rapid calculation of partition functions and free energies of fluids. J. Chem. Phys. 135, 174105 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert John Nicholas Baldock .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baldock, R.J.N. (2017). Introduction. In: Classical Statistical Mechanics with Nested Sampling. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-66769-0_1

Download citation

Publish with us

Policies and ethics