Diffusive Limits of the Master Equation in Inhomogeneous Media

  • Luca SalasnichEmail author
  • Andrea Bonato
  • Fabio Sattin
Part of the Understanding Complex Systems book series (UCS)


Diffusion is the macroscopic manifestation of disordered molecular motion. Mathematically, diffusion equations are partial differential equations describing the fluid-like large-scale dynamics of parcels of molecules. Spatially inhomogeneous systems affect in a position-dependent way the average motion of molecules; thus, diffusion equations have to reflect somehow this fact within their structure. It is known since long that in this case an ambiguity arises: there are several ways of writing down diffusion equations containing space dependence within their parameters. These ways are all potentially valid but not necessarily equivalent, meaning that the different diffusion equations yield different solutions for the same data. The ambiguity can only be resolved at the microscopic level: a model for the stochastic dynamics of the individual molecules must be provided, and a well-defined diffusion equation then arises as the long-wavelength limit of this dynamics. In this work we introduce and employ the integro-differential Master Equation (ME) as a tool for describing the microscopic dynamics. We show that is possible to provide a parameterized version of the ME, in terms of a single numerical parameter (\(\alpha \)), such that the different expressions for the diffusive fluxes are recovered for different values of \(\alpha \). This work aims to fill a gap in the literature, where the ME was shown to deliver just one diffusive limit. In the second part of the paper some numerical computer models are introduced, both to support analytical considerations, and to extend the scope of the ME to more sophisticated scenarios, beyond the simplest \(\alpha \)-parameterization.


Diffusion Master equation 



FS wishes to thank Prof. E. Bringuier and Prof. M. Baiesi for providing him with some of the literature quoted, Dr. D.F. Escande, Dr. S. Cappello, Dr. I. Predebon for reading drafts of this paper and Prof. G. Ryskin for interesting discussions about his proof. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. LS thanks MIUR for partial support (PRIN Project 2010LLKJBX).


  1. 1.
    Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77 (1977)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bengfort, M., Malchow, H., Hilker, F.: The Fokker-Planck law of diffusion and pattern formation in heterogeneous environments. J. Math. Biol. (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bringuier, E.: Kinetic theory of inhomogeneous diffusion. Phys. A 388, 2588 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83 (1948)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Coffey, W., Kalmykov, Y.P., Valdron, J.: The Langevin Equation. World Scientific (1998)Google Scholar
  6. 6.
    Collins, R., Carson, S., Matthew, J.: Diffusion equation for one-dimensional unbiased hopping. Am. J. Phys. 65, 230–7 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover publications, New-York (1956)zbMATHGoogle Scholar
  8. 8.
    Elskens, Y., Escande, D.: Microscopic Dynamics of Plasmas and Chaos. Institute of Physics Publishing (2003)Google Scholar
  9. 9.
    Escande, D., Sattin, F.: When can the Fokker-Planck equation describe anomalous or chaotic transport? Phys. Rev. Lett. 99, 185005 (2007)Google Scholar
  10. 10.
    Escande, D., Sattin, F.: When can the Fokker-Planck equation describe anomalous or chaotic transport? intuitive aspects. Plasma Phys. Control. Fusion 50, 124023 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Fick, A.: On liquid diffusion. J. Membr. Sci. 100, 33–38 (1995)CrossRefGoogle Scholar
  12. 12.
    Graham, T.: On the law of the diffusion of gases. J. Membr. Sci. 100, 17–21 (1995)CrossRefGoogle Scholar
  13. 13.
    Green, A., Naghdi, P.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc., Math. Phys. Sci. 432, 171 (1991)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Guyer, R., Krumhansl, J.: Solution of the linearized phonon boltzmann equation. Phys. Rev. 148, 766 (1966)ADSCrossRefGoogle Scholar
  15. 15.
    Joseph, D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41 (1989)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    van Kampen, N.: The expansion of the master equation. Adv. Chem. Phys. 34, 245 (1976)Google Scholar
  17. 17.
    van Kampen, N.: Itô versus Stratonovich. J. Stat. Phys. 24, 175–187 (1981)Google Scholar
  18. 18.
    van Kampen, N.: Diffusion in inhomogeneous media. J. Phys. Chem. Solids 49, 673–677 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    Kenkre, V., Montroll, E., Shlesinger, M.: Generalized master equations for continuous-time random walks. J. Stat. Phys. 9, 45 (1973)ADSCrossRefGoogle Scholar
  20. 20.
    Kovács, R., Ván, P.: Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613 (2015)CrossRefGoogle Scholar
  21. 21.
    Lançon, P., Batrouni, G., Lobry, L., Ostrowsky, N.: Drift without flux: Brownian walker with a space-dependent diffusion coefficient. EPL 54, 28 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Lançon, P., Batrouni, G., Lobry, L., Ostrowsky, N.: Brownian walker in a confined geometry leading to a space-dependent diffusion coefficient. Phys. A 304, 65–76 (2002)CrossRefGoogle Scholar
  23. 23.
    Landsberg, P.: D grad v or grad (D v)? J. Appl. Phys. 56, 1119 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    Lichtenberg, A., Lieberman, M.: Regular and Stochastic Motion. Springer (1983)Google Scholar
  25. 25.
    Mannella, R., McClintock, P.: Comment on influence of noise on force measurements. Phys. Rev. Lett. 107, 078901 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Mannella, R., McClintock, P.: Itô versus Stratonovich: 30 years later. Fluct. Noise Lett. 11, 1240010 (2012)CrossRefGoogle Scholar
  27. 27.
    Mason, E., Evans, R.: Graham’s laws: simple demonstrations of gases in motion: part i, theory. J. Chem. Educ. 46, 359–423 (1969)Google Scholar
  28. 28.
    Mason, E., Kronstadt, B.: Graham’s laws of diffusion and effusion. J. Chem. Educ. 44, 740 (1967)CrossRefGoogle Scholar
  29. 29.
    Maxwell, J.: On the dynamical theory of gases. Philos. Trans. R. Soc. London 157, 49–88 (1867)ADSCrossRefGoogle Scholar
  30. 30.
    Philibert, J.: One and a half century of diffusion: Fick, Einstein, before and beyond. Diffus. Fundam. 4, 6 (2006)Google Scholar
  31. 31.
    Risken, H.: The Fokker-Planck Equation. Springer (1996)Google Scholar
  32. 32.
    Ruckstuhl, A.: Thomas Graham’s study of the diffusion of gases. J. Chem. Educ. 28, 594 (1951)ADSCrossRefGoogle Scholar
  33. 33.
    Ryskin, G.: Simple procedure for correcting equations of evolution: application to Markov processes. Phys. Rev. E 56, 5123–5127 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    Sattin, F.: Fick’s law and Fokker-Planck equation in inhomogeneous environments. Phys. Lett. A 372, 3941 (2008)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Schnitzer, M.: Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553 (1993)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Smythe, J., Moss, F., McClintock, P., Clarkson, D.: Itô versus Stratonovich revisited. Phys. Lett. A 97, 95–98 (1983)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Sokolov, I.: Itô, Stratonovich, Hänggi and all the rest: the thermodynamics of interpretation. Chem. Phys. 375, 359–363 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    Ván, P., Fülöp, T.: Universality in heat conduction theory: weakly nonlocal thermodynamics. Ann. Phys. (Berlin) 524, 470–478 (2012)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Van Milligen, B.P., Bons, P., Carreras, B., Sánchez, R.: On the applicability of Fick’s law to diffusion in inhomogeneous systems. Eur. J. Phys. 26, 913 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    Van Milligen, B.P., Carreras, B., Sánchez, R.: Pulse propagation in a simple probabilistic transport model. Plasma Phys. Control. Fusion 47, B743 (2005)CrossRefGoogle Scholar
  41. 41.
    Vernotte, M.: Les paradoxes de la theorie continue de i’equation de la chaleur. C. R. Acad. Sci. 246, 3154–3155 (1958)Google Scholar
  42. 42.
    Volpe, G., Helden, L., Brettschneider, T., Wehr, J., Bechinger, C.: Influence of noise on force measurements. Phys. Rev. Lett. 104, 170602 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Volpe, G., Helden, L., Brettschneider, T., Wehr, J., Bechinger, C.: Influence of noise on force measurements. Phys. Rev. Lett. 107, 078902 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e Astronomia Galileo GalileiUniversitá di PadovaPadovaItaly
  2. 2.Consorzio RFX (CNR, ENEA, INFN, Universitá di Padova, Acciaierie Venete SPA)PadovaItaly

Personalised recommendations