Skip to main content

Energy Solutions to One-Dimensional Singular Parabolic Problems with \({ BV}\) Data are Viscosity Solutions

  • Conference paper
  • First Online:
Mathematics for Nonlinear Phenomena — Analysis and Computation (MNP2015 2015)

Abstract

We study one-dimensional very singular parabolic equations with periodic boundary conditions and initial data in BV, which is the energy space. We show existence of solutions in this energy space and then we prove that they are viscosity solutions in the sense of Giga–Giga.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems (The Clarendon Press, Oxford University Press, New York, 2000)

    MATH  Google Scholar 

  2. L. Ambrosio, D. Pallara, Integral representations of relaxed functionals on \(BV(\mathbb{R}^n,\mathbb{R}^k)\) and polyhedral approximation. Indiana Univ. Math. J. 42, 295–321 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Andreu, V. Caselles, J.M. Mazón, S. Moll, The Dirichlet problem associated to the relativistic heat equation. Mathematische Annalen 347, 135–199 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Andreu, C. Ballester, V. Caselles, J.M. Mazón, The Dirichlet problem for the total variation flow. J. Funct. Anal. 180, 347–403 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Andreu-Vaillo, V. Caselles, J.M. Mazón, Parabolic quasilinear equations minimizing linear growth functionals (Birkhäuser, Basel, 2004)

    Book  MATH  Google Scholar 

  6. G. Bellettini, V. Caselles, M. Novaga, The total variation flow in \(\mathbb{R}^N\). J. Differ. Equ. 184, 475–525 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Bouchitté, M. Valadier, Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80, 398–420 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973)

    Google Scholar 

  9. A. Briani, A. Chambolle, M. Novaga, G. Orlandi, On the gradient flow of a one-homogeneous functional. Conflu. Math. 3, 617–635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Y.G. Chen, Y. Giga, S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differ. Geom. 33, 749–786 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. M.G. Crandall, H. Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. M.G. Crandall, P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. L.C. Evans, J. Spruck, Motion of level sets by mean curvature. I. J. Differ. Geom. 33, 635–681 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Fonseca, P. Rybka, Relaxation of multiple integrals in the space \(BV(\Omega ,^p)\). Proc. R. Soc. Edinburgh Sect. A 121, 321–348 (1992)

    Google Scholar 

  15. Fukui, T., Giga, Y.: Motion of a graph by nonsmooth weighted curvature. In: Lakshmikantham, V. (ed.) World Congress of Nonlinear Analysts ’92, Vol. I–IV (Tampa, FL, 1992), pp. 47-56. de Gruyter, Berlin (1996)

    Google Scholar 

  16. M.-H. Giga, Y. Giga, Evolving graphs by singular weighted curvature. Arch. Ration. Mech. Anal. 141, 117–198 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.-H. Giga, Y. Giga, Stability for evolving graphs by nonlocal weighted curvature. Commun. Partial Differ. Equ. 24, 109–184 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. M.-H. Giga, Y. Giga, Generalized motion by nonlocal curvature in the plane. Arch. Ration. Mech. Anal. 159, 295–333 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.-H. Giga, Y. Giga, R. Kobayashi, Very singular diffusion equations, in Taniguchi Conference on Mathematics Nara’98, ed. by M. Maruyama, T. Sunada (Math. Soc. Japan, Tokyo, 2001), pp. 93–125

    Google Scholar 

  20. M.-H. Giga, Y. Giga, A. Nakayasu, On general existence results for one-dimensional singular diffusion equations with spatially inhomogeneous driving force, in Geometric Partial Differential Equations, ed. by A. Chambolle, M. Novaga, E. Valdinoci. Ed. Norm., Pisa (2013), pp. 145–170

    Google Scholar 

  21. M.-H. Giga, Y. Giga, N. Požár, Anisotropic total variation flow of non-divergence type on a higher dimensional torus. Adv. Math. Sci. Appl. 23, 235–266 (2013)

    MathSciNet  MATH  Google Scholar 

  22. M.-H. Giga, Y. Giga, N. Požár, Periodic total variation flow of non-divergence type in \(\mathbb{R}^n\). J. Math. Pures Appl. 9(102), 203–233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. M.-H. Giga, Y. Giga, P. Rybka, A comparison principle for singular diffusion equations with spatially inhomogeneous driving force for graphs. Arch. Ration. Mech. Anal. 211, 419–453 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Giga, P. Górka, P. Rybka, Bent rectangles as viscosity solutions over a circle. Nonlinear Anal. 125, 518–549 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Kielak, P.B. Mucha, P. Rybka, Almost classical solutions to the total variation flow. J. Evol. Eqs 13, 21–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Łojasiewicz, An Introduction to the Theory of Real Functions (Wiley Ltd, Chichester, 1988)

    MATH  Google Scholar 

  27. J.-P. Mandallena, Quasiconvexification of geometric integrals. Ann. Mat. Pura Appl. 4(184), 473–493 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Matusik, P. Rybka, Oscillating facets. Port. Math. 73, 1–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. P.B. Mucha, Stagnation, creation, breaking. Adv. Math. Sci. Appl. 24, 223–235 (2014)

    MathSciNet  MATH  Google Scholar 

  30. P.B. Mucha, P. Rybka, A caricature of a singular curvature flow in the plane. Nonlinearity 21, 2281–2316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. P.B. Mucha, P. Rybka, Well-posedness of sudden directional diffusion equations. Math. Methods Appl. Sci. 36, 2359–2370 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. P.B. Mucha, P. Rybka, Almost classical solutions of static Stefan type problems involving crystalline curvature, in Nonlocal and Abstract Parabolic Equations and their Applications, ed. by P.B. Mucha, M. Niezgódka, P. Rybka (Polish Acad. Sci. Inst. Math, Warsaw, 2009), pp. 223–234

    Chapter  Google Scholar 

  33. J. Simon, Compact sets in the space \(L^p(0, T; B)\). Ann. Mat. Pura Appl. 4(146), 65–96 (1987)

    MATH  Google Scholar 

  34. H. Spohn, Surface dynamics below the roughening transition. J. Physique I(3), 68–81 (1993)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Both authors thank the grant agencies for partial support during the preparation of this paper and the universities, which hosted them. AN was supported by a Grant-in-Aid for JSPS Fellows No. 25-7077 as well as by MNiSW through 2853/7.PR/2013/2 grant. PR was in part supported by the EC IRSES program “Flux”. Both authors were in part supported by NCN through grant 2011/01/B/ST1/01197. A part of the research was performed during AN visits to the University of Warsaw supported by the Warsaw Center of Mathematics and Computer Science through the program ‘Guests’. Some work was done during a PR visit to the University of Tokyo.

Both authors thank the referee for his/her constructive comments, which help to improve the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Nakayasu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nakayasu, A., Rybka, P. (2017). Energy Solutions to One-Dimensional Singular Parabolic Problems with \({ BV}\) Data are Viscosity Solutions. In: Maekawa, Y., Jimbo, S. (eds) Mathematics for Nonlinear Phenomena — Analysis and Computation. MNP2015 2015. Springer Proceedings in Mathematics & Statistics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-66764-5_9

Download citation

Publish with us

Policies and ethics