Skip to main content

Local Well-Posedness for the Cauchy Problem to Nonlinear Heat Equations of Fujita Type in Nearly Critical Besov Space

  • Conference paper
  • First Online:
Mathematics for Nonlinear Phenomena — Analysis and Computation (MNP2015 2015)

Abstract

We show the local well-posedness of the Cauchy problem to a nonlinear heat equation of Fujita type in lower space dimensions. It is well known that the nonnegative solution corresponding to the Fujita critical exponent \(p=1+\frac{2}{n}\) does not exist in the critical scaling invariant space \(L^1(\mathbb R^n)\). We show if the initial data is in a modified Besov spaces, then the corresponding mild solution to the equation with the Fujita critical exponent \(p=1+\frac{2}{n}\) exists and the problem is locally well-posed in the same space of the initial data. Besides we also show the problem is ill-posed in the scaling invariant Besov and inhomogeneous Besov spaces. This is known in \(L^1\) space and extension of the result known in the Lebesgue spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Brezis, T. Cazenave, A nonlinear heat equation with singular initial data. J. Anal. Math. 68, 277–304 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Cazenave, F. Weissler, Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations. Math. Z. 228, 83–120 (1998)

    Google Scholar 

  3. H. Fujita, On the blowing-up of solutions of the Cauchy problem for $u_t={\varDelta } u+u^{1+\alpha }$. J. Fac. Sci. Univ. Tokyo Ser. I 13, 109–124 (1966)

    Google Scholar 

  4. H. Fujita, T. Kato, On Navier-Stokes initial value problem 1. Arch. Ration. Mech. Anal. 46, 269–315 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system. J. Differ. Equ. 61, 186–212 (1986)

    Google Scholar 

  6. K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic equations. Proc. Jpn. Acad. 49, 503–505 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Iwabuchi, T. Ogawa, Ill-posedness issue for nonlinear Schrödinger equation with the quadratic nonlinearity for low dimensions. Trans. Am. Math. Soc. 367, 2613–2630 (2015)

    Article  MATH  Google Scholar 

  8. T. Iwabuchi, T. Ogawa, Ill-posedness issue for the drift diffusion system in the homogeneous Besov spaces. Osaka J. Math. 53, 919–939 (2016)

    MathSciNet  MATH  Google Scholar 

  9. K. Kobayashi, T. Sirao, H. Tanaka, On the growing up problem for semilinear heat equations. J. Math. Soc. Jpn. 29, 407–424 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Kato, H. Fujita, On the non-stationary Navier-Stokes system. Rend. Sem. Math. Univ. Padova 32, 243–260 (1962)

    MATH  Google Scholar 

  11. H. Kozono, M. Yamazaki, Semilinear heat equations and Navier-Stokes equation with distribution in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959–1014 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Laister, J.C. Robinson, M. Sier$\dot{\text{z}}$ȩga, A. Vidal-L$\acute{\text{ o }}$pez, A complete characterization of local existence for semilinear heat equations in Lebesgue spaces. Math. Ann. (2015), published on line

    Google Scholar 

  14. T. Ogawa, Nonlinear evolutionary partial differential equations, preprint. Tohoku University (2017)

    Google Scholar 

  15. T. Ogawa, S. Shimizu, Maximal $L^1$ regularity for the Cauchy problem of a parabolic equation with variable coefficients. Math. Ann. 365(1), 661–705 (2016)

    Google Scholar 

  16. S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations. Osaka J. Math. 12, 45–51 (1975)

    MathSciNet  MATH  Google Scholar 

  17. F. Weissler, Local existence and non-existence for semilinear parabolic equations in $L^p$. Indiana Univ. Math. J. 29, 79–102 (1980)

    Google Scholar 

  18. F. Weissler, Existence and non-existence of global solutions for a semilinear heat equation. Isr. J. Math. 38, 29–40 (1981)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Kazuhiro Ishige, Professor Tsukasa Iwabuchi, and Dr. Ryuichi Sato for their stimulation discussion on the local well-posedness. The work of Takayoshi Ogawa is partially supported by JSPS grant-in-aid for Scientific Research (S) #25220702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayoshi Ogawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ogawa, T., Yamane, Y. (2017). Local Well-Posedness for the Cauchy Problem to Nonlinear Heat Equations of Fujita Type in Nearly Critical Besov Space. In: Maekawa, Y., Jimbo, S. (eds) Mathematics for Nonlinear Phenomena — Analysis and Computation. MNP2015 2015. Springer Proceedings in Mathematics & Statistics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-66764-5_10

Download citation

Publish with us

Policies and ethics