Skip to main content

Diabetic Retinopathy and Retinal Vascular Diseases

  • Chapter
  • First Online:
  • 2140 Accesses

Abstract

This chapter elaborates on the indispensable role of OCT in the management of diabetic retinopathy and retinal vascular diseases. At the beginning, different classifications of diabetic macular edema based on OCT are discussed. Then, various manifestations of diabetic retinopathy such as microaneurysms, hard exudates, hemorrhages, intraretinal microvascular abnormalities (IRMA), and neovascular membranes are discussed by showing their OCT images. One of the hallmarks of diabetes is the pathology of the posterior hyaloid face, which undergoes vitreoschisis and can lead to tractional macular detachment, one of the most visually devastating conditions in diabetes that can only be recognized with OCT in its early stages. A vascular accident superimposed on preexisting diabetic retinopathy is among the challenging issues discussed in this chapter. This, in addition to a variety of vascular accidents and follow-up pictures, is among the topics that have been covered in this chapter. Other valuable information included is OCT features of laser scars, cotton wool spots, lamellar holes, hypertensive retinopathy, retinal macroaneurysm, Purtscher-like retinopathy, and macular telangiectasia.

This is a preview of subscription content, log in via an institution.

References

  1. Baskin DE. Optical coherence tomography in diabetic macular edema. Curr Opin Ophthalmol. 2010;21:172–7.

    Article  PubMed  Google Scholar 

  2. Goatman KA. A reference standard for the measurement of macular oedema. Br J Ophthalmol. 2006;90:1197–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oshima Y, Emi K, Yamanishi S, Motokura M. Quantitative assessment of macular thickness in normal subjects and patients with diabetic retinopathy by scanning retinal thickness analyser. Br J Ophthalmol. 1999;84:54–61.

    Article  Google Scholar 

  4. Brown JC, Solomon SD, Bressler SB, Schachat AP, DiBernardo C, Bressler NM. Detection of diabetic foveal edema, contact lens biomicroscopy compared with optical coherence tomography. Arch Ophthalmol. 2004;122:330–5.

    Article  PubMed  Google Scholar 

  5. Ozdek SC, Erdinç MA, Gürelik G, Aydin B, Bahçeci U, Hasanreisoğlu B. Optical coherence tomographic assessment of diabetic macular edema: comparison with fluorescein angiographic and clinical findings. Ophthalmologica. 2005;219:86–92.

    Article  PubMed  Google Scholar 

  6. Toth CA, Narayan DG, Boppart SA, Hee MR, Fujimoto JG, Birngruber R, et al. A comparison of retinal morphology viewed by optical coherence tomography and by light microscopy. Arch Ophthalmol. 1997;115:1425–8.

    Article  CAS  PubMed  Google Scholar 

  7. Massin P, Erginay A, Haouchine B, Mehidi AB, Paques M, Gaudric A. Retinal thickness in healthy and diabetic subjects measured using optical coherence tomography mapping software. Eur J Ophthalmol. 2002;12:102–8.

    Article  CAS  PubMed  Google Scholar 

  8. Murakami T, Yoshimura N. Structural changes in individual retinal layers in diabetic macular edema. J Diabetes Res. 2013;2013:920713.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Demir M, Dirim B, Acar Z, Yilmaz M, Sendul Y. Central macular thickness in patients with type 2 diabetes mellitus without clinical retinopathy. J Ophthalmol. 2013;2013:767931.

    PubMed  PubMed Central  Google Scholar 

  10. Schaudig UH, Glaefke C, Scholz F, Richard G. Optical coherence tomography for retinal thickness measurement in diabetic patients without clinically significant macular oedema. Ophthalmic Surg Lasers. 2000;31:182–6.

    CAS  PubMed  Google Scholar 

  11. Browning DJ, McOwen MD, Bowen RM Jr, O’Marah TL. Comparison of the clinical diagnosis of diabetic macular oedema with diagnosis by optical coherence tomography. Ophthalmology. 2004;111:712–5.

    Article  PubMed  Google Scholar 

  12. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Rutledge B, et al. Quantitative assessment of macular oedema with optical coherence tomography. Arch Ophthalmol. 1995;113:1019–29.

    Article  CAS  PubMed  Google Scholar 

  13. Otani T, Kishi S, Maruyama Y. Patterns of diabetic macular oedema with optical coherence tomography. Am J Ophthalmol. 1999;127:688–93.

    Article  CAS  PubMed  Google Scholar 

  14. Yang CS, Cheng CY, Lee FL, Hsu WM, Liu JH. Quantitative assessment of retinal thickness in diabetic patients with and without clinically significant macular oedema using optical coherence tomography. Acta Ophthalmol Scand. 2001;79:266–70.

    Article  CAS  PubMed  Google Scholar 

  15. Moreira RO, Trujillo FR, Meirelles RMR, Ellinger VC, Zagury L. Use of optical coherence tomography (OCT) and indirect ophthalmoscopy in the diagnosis of macular oedema in diabetic patients. Int Ophthalmol. 2001;24:331–6.

    Article  CAS  PubMed  Google Scholar 

  16. Koleva-Georgieva D. Optical coherence tomography findings in diabetic macular edema. In: Ola MS, editor. Diabetic retinopathy. Rijeka, Croatia: InTech Open; 2012. ISBN: 978-953-51-0044-7.

    Google Scholar 

  17. Kim NR, Kim YJ, Chin HS, Moon YS. Optical coherence tomographic patterns in diabetic macular oedema: prediction of visual outcome after focal laser photocoagulation. Br J Ophthalmol. 2009;93:901–5.

    Article  CAS  PubMed  Google Scholar 

  18. Somfai GM, Tátrai E, Ferencz M, Puliafito CA, Debuc DC. Retinal layer thickness changes in eyes with preserved visual acuity and diffuse diabetic macular edema on optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2010;41:593–7.

    Article  PubMed  Google Scholar 

  19. Yanoff M, Fine BS, Brucker AJ, Eagle RC Jr. Pathology of human cystoid macular edema. Survey Ophthalmol. 1984;28(Suppl):505–11.

    Article  Google Scholar 

  20. Yasser M, Helmy YM, Atta Allah HR. Optical coherence tomography classification of diabetic cystoid macular edema. Clin Ophthalmol. 2013;7:1731–7.

    Google Scholar 

  21. Panozzo G, Parolini B, Gusson E, Mercanti A, Pinackatt S, Bertoldo G, et al. Diabetic macular edema: an OCT-based classification. Semin Ophthalmol. 2004;19:13–20.

    Article  CAS  PubMed  Google Scholar 

  22. Maalej A, Cheima W, Asma K, Riadh R, Salem G. Optical coherence tomography for diabetic macular edema: early diagnosis, classification and quantitative assessment. J Clin Exp Ophthalmol. 2012;S2:4.

    Google Scholar 

  23. Uji A, Murakami T, Nishijima K, Akagi T, Horii T, Arakawa N, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol. 2012;153:710–7.

    Article  PubMed  Google Scholar 

  24. McLeod DS, Lutty GA. High-resolution histologic analysis of the human choroidal vasculature. Invest Ophthalmol Vis Sci. 1994;35:3799–811.

    CAS  PubMed  Google Scholar 

  25. Adhi M, Brewer E, Waheed NK, Duker JS. Analysis of morphological features and vascular layers of choroid in diabetic retinopathy using spectral-domain optical coherence tomography. JAMA Ophthalmol. 2013;131:1267–74.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Polito A, Del Borrello M, Isola M, Zemella N, Bandello F. Repeatability and reproducibility of fast macular thickness mapping using stratus optical coherence tomography. Arch Ophthalmol. 2005;123:1330–7.

    Article  PubMed  Google Scholar 

  27. Wang H, Chhablani J, Freeman WR, Chan CK, Kozak I, Bartsch DU, et al. Characterization of diabetic microaneurysms by simultaneous fluorescein angiography and spectral-domain optical coherence tomography. Am J Ophthalmol. 2012;153:861–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gella L, Raman R, Rani PK, Sharma T. Spectral domain optical coherence tomography characteristics in diabetic retinopathy. Oman J Ophthalmol. 2014;7:126–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wali UK, Al KN. Clinical applications of optical coherence tomography in ophthalmology. InTech Open: Rijek, Croatia; 2012.

    Google Scholar 

  30. Murata T, Ishibashi T, Inomata H. Immunohistochemical detection of extravasated fibrinogen (fibrin) in human diabetic retina. Graefes Arch Clin Exp Ophthalmol. 1992;230:428–31.

    Article  CAS  PubMed  Google Scholar 

  31. Otani T, Kishi S. Tomographic findings of foveal hard exudates in diabetic macular edema. Am J Ophthalmol. 2001;131:50–4.

    Article  CAS  PubMed  Google Scholar 

  32. Punjabi OS, Flynn HW Jr, Knighton RW, Gregori G, Couvillion SS, Lalwani GL, et al. Spectral domain optical coherence tomography for proliferative diabetic retinopathy with sub-hyaloid hemorrhage. Ophthalmic Surg Laser Imaging. 2008;39:494–6.

    Article  Google Scholar 

  33. Cho H, Alwassia AA, Regiatieri CV, Zhang JY, Baumal C, Waheed N, et al. Retinal neovascularization secondary to proliferative diabetic retinopathy characterized by spectral domain optical coherence tomography. Retina. 2013;33:542–7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee CS, Lee AY, Sim DA, Keane PA, Mehta H, Zarranz-Ventura J, et al. Reevaluating the definition of intraretinal microvascular abnormalities and neovascularization elsewhere in diabetic retinopathy using optical coherence tomography and fluorescein angiography. Am J Ophthalmol. 2015;159:101–10.e1.

    Article  PubMed  Google Scholar 

  35. Buabbud JC, Al-latayfeh MM, Sun JK. Optical coherence tomography imaging for diabetic retinopathy and macular edema. Curr Diab Rep. 2010;10:264–9.

    Article  PubMed  Google Scholar 

  36. Sakimoto S, Gomi F, Sakaguchi H, Akiba M, Kamei M, Nishida K. Analysis of retinal nonperfusion using depth-integrated optical coherence tomography images in eyes with branch retinal vein occlusion. Invest Ophthalmol Vis Sci. 2015;56:640–6.

    Article  PubMed  Google Scholar 

  37. Kim CS, Shin KS, Lee HJ, Jo YJ, Kim JY. Sectoral retinal nerve fiber layer thinning in branch retinal vein occlusion. Retina. 2014;34:525–30.

    Article  PubMed  Google Scholar 

  38. McLeod D. Why cotton wool spots should not be regarded as retinal nerve fibre layer infarcts. Br J Ophthalmol. 2005;89:229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmidt D. The mystery of the cotton-wool spots—a review of recent and historical descriptions. Eur J Med Res. 2008;13:231–66.

    PubMed  Google Scholar 

  40. Kozak I, Bartsch DU, Cheng L, Freeman WR. Hyperreflective sign in resolved cotton wool spots using high-resolution optical coherence tomography and optical coherence tomography ophthalmoscopy. Ophthalmology. 2007;114:537–43.

    Article  PubMed  Google Scholar 

  41. Spaide RF, Lee JK, Klancnik JK Jr, Gross NE. Optical coherence tomography of branch retinal vein occlusion. Retina. 2003;23:343–7.

    Article  PubMed  Google Scholar 

  42. Yamaguchi Y, Otani T, Kishi S. Serous macular detachment in branch retinal vein occlusion. Retina. 2006;26:1029–33.

    Article  PubMed  Google Scholar 

  43. Coady PA, Cunningham ET Jr, Vora RA, McDonald HR, Johnson RN, Jumper JM, et al. Spectral domain optical coherence tomography findings in eyes with acute ischaemic retinal whitening. Br J Ophthalmol. 2015;99:586–92. https://doi.org/10.1136/bjophthalmol-2014-304900.

    Article  PubMed  Google Scholar 

  44. Suzuki M, Minamoto A, Yamane K, Uka J, Aoki S, Mishima HK. Malignant hypertensive retinopathy studied with optical coherence tomography. Retina. 2005;25:383–4.

    Article  PubMed  Google Scholar 

  45. Goldenberg D, Soiberman U, Loewenstein A, Goldstein M. Heidelberg spectral-domain optical coherence tomographic findings in retinal artery macroaneurysm. Retina. 2012;32:990–5.

    Article  PubMed  Google Scholar 

  46. Ikeda F, Kishi S. Inner neural retinal loss in central retinal artery occlusion. Jpn J Ophthalmol. 2010;54:423–9.

    Article  PubMed  Google Scholar 

  47. Ahn SJ, Woo SJ, Park KH, Jung C, Hong JH, Han MK. Retinal and choroidal changes and visual outcome in central retinal artery occlusion: an optical coherence tomography study. Am J Ophthalmol. 2015;159:667–76. pii: S0002-9394(15)00005-7

    Article  PubMed  Google Scholar 

  48. Baumüller S, Issa P, Scholl HP, Schmitz-Valckenberg S, Holz FG. Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2. Ophthalmology. 2010;117:2162–8.

    Article  PubMed  Google Scholar 

  49. JH O, Oh J, Togloom A, Kim SW, Huh K. Characteristics of cystoid spaces in type 2 idiopathic macular telangiectasia on spectral domain optical coherence tomography images. Retina. 2014;34:1123–31.

    Article  Google Scholar 

  50. CharbelIssa P, Holz FG, Scholl HP. Findings in fluorescein angiography and optical coherence tomography after intravitreal bevacizumab in type 2 idiopathic macular telangiectasia. Ophthalmology. 2007;114:1736–42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazanin Ebrahimiadib M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ebrahimiadib, N., Ferenchak, K., Hajizadeh, F. (2018). Diabetic Retinopathy and Retinal Vascular Diseases. In: Hajizadeh, F. (eds) Atlas of Ocular Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-66757-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66757-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66756-0

  • Online ISBN: 978-3-319-66757-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics