Skip to main content

Introduction to Optical Coherence Tomography

  • Chapter
  • First Online:
  • 2224 Accesses

Abstract

(1) Basics and principles of optical coherence tomography (OCT), which briefly discuss the mechanisms and operation of OCT systems and a comparison of old and new systems (time domain vs. spectral domain) and their reproducibility. It concisely explains the swept-source OCT mechanism and OCT angiography as well. (2) Normal OCT, which describes normal findings and variations that are expected on normal OCT images, and the layers of the normal retina and in different parts of the posterior segment. (3) Enhanced-depth imaging (EDI)-OCT and its applications and indications in various diseases such as choroidal tumors, age-related macular degeneration, diabetic retinopathy, central serous chorioretinopathy, glaucoma, intraocular inflammation, and myopia. Moreover, choroidal measurement and its variations under different conditions are discussed. (4) Limitations and indications of OCT, which evaluate and explain the drawbacks and advantages of this diagnostic method for the exploration of ocular pathologies. (5) Pitfalls and artifacts, which covers and illustrates diagnostic pitfalls and artifacts in OCT image interpretation in circumstances such as the presence of an epiretinal membrane and myopia.

This is a preview of subscription content, log in via an institution.

References

  1. Schuman JS, Puliafito CA, Fujimoto JG, Duker JS. Optical coherence tomography of ocular diseases. 3rd ed. Thorofare, NJ, USA: Slack Inc.; 2013.

    Google Scholar 

  2. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, et al. Optical coherence tomography of the human retina. Arch Ophthalmol. 1995;113:325–32.

    Article  CAS  PubMed  Google Scholar 

  3. Schuman JS, Pedut-Kloizman T, Hertzmark E, Hee MR, Wilkins JR, Coker JG, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996;103:1889–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arevalo JF. Retinal angiography and optical coherence tomography. New York, NY: Springer; 2009.

    Book  Google Scholar 

  5. Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG, et al. Assessment of artifacts and reproducibility across spectral-and time-domain optical coherence tomography devices. Ophthalmology. 2009;116:1960–70.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sadiq MA, Rashid A, Channa R, Hatef E, Do DV, Nguyen QD, et al. Reliability and reproducibility of spectral and time domain optical coherence tomography images before and after correction for patients with age-related macular degeneration. F1000Res. 2015;2:131.

    PubMed Central  Google Scholar 

  7. Diabetic Retinopathy Clinical Research Network Writing Committee, Bressler SB, Edwards AR, Chalam KV, Bressler NM, Glassman AR, Jaffe GJ, et al. Reproducibility of spectral domain ocular coherence tomography retinal thickness measurements and conversion to equivalent time domain metrics in diabetic macular edema. JAMA Ophthalmol. 2014;132:1113–22.

    Article  Google Scholar 

  8. Spaide RF, Fujimoto JG, Waheed NK. Optical coherence tomography angiography. Retina. 2015;35:2161–2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102:217–29.

    Article  CAS  PubMed  Google Scholar 

  10. Wykoff CC, Berrocal AM, Schefler AC, Uhlhorn SR, Ruggeri M, Hess D. Intraoperative OCT of a full-thickness macular hole before and after internal limiting membrane peeling. Ophthalmic Surg Lasers Imaging. 2010;41:7–11.

    Article  PubMed  Google Scholar 

  11. Puliafito CA. Optical coherence tomography: a new tool for intraoperative decision making. Ophthalmic Surg Lasers Imaging. 2010;41:6.

    Article  PubMed  Google Scholar 

  12. Spaide RF, Curcio CA. Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina. 2011;31:1609–19.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Witkin AJ, Ko TH, Fujimoto JG, Chan A, Drexler W, Schuman JS, et al. Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. Am J Ophthalmol. 2006;142:945–52.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Early Treatment Diabetic Retinopathy Study Research Group. ETDRS report number 10: grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. Ophthalmology. 1991;98:786–806.

    Article  Google Scholar 

  15. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, et al. Three-dimensional retinal imaging with high speed, ultrahigh-resolution, optical coherence tomography. Ophthalmology. 2005;112:1734–46.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, et al. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology. 2006;113:2054.e1–14.

    Article  Google Scholar 

  17. Chin EK, Sedeek RW, Li Y, Beckett L, Redenbo E, Chandra K, et al. Reproducibility of macular thickness measurement among five OCT instruments: effects of image resolution, image registration, and eye tracking. Ophthalmic Surg Lasers Imaging. 2012;43:97–108.

    Article  PubMed  Google Scholar 

  18. Durbin M, Abunto T, Chang M, Lujan B. Retinal measurements: comparison between Cirrus HD-OCT and Stratus OCT. 2007. Information brochure available at https://www.amedeolucente.it/pdf/cirrus_stratus.pdf

  19. Leung CK, Cheung CY, Weinreb RN, Lee G, Lin D, Pang CP, et al. Comparison of macular thickness measurements between time domain and spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2008;49:4893–7.

    Article  PubMed  Google Scholar 

  20. Huang J, Liu X, Wu Z, Xiao H, Dustin L, Sadda S. Macular thickness measurements in normal eyes with time domain and Fourier domain optical coherence tomography. Retina. 2009;29:980–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Roh YR, Park KH, Woo SJ. Foveal thickness between Stratus and Spectralis optical coherence tomography in retinal diseases. Korean J Ophthalmol. 2013;27:268–5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grover S, Murthy RK, Brar VS, Chalam KV. Comparison of retinal thickness in normal eyes using Stratus and Spectralis optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:2644–7.

    Article  PubMed  Google Scholar 

  23. Solé González L, Abreu González R, Alonso Plasencia M, Abreu RP. Normal macular thickness and volume using spectral domain optical coherence tomography in a reference population. Arch Soc Esp Oftalmol. 2013;88:352–8. [Article in Spanish]

    Article  PubMed  Google Scholar 

  24. Liew S, Gilbert C, Spector T, Marshall J, Hammond C. The role of heredity in determining central retinal thickness. Br J Ophthalmol. 2007;91:1143–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eriksson U, Alm A. Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT. Br J Ophthalmol. 2009;93:1448–52.

    Article  CAS  PubMed  Google Scholar 

  26. Kim M, Kim SS, Kwon HJ, Koh HJ, Lee SC. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study. Invest Ophthalmol Vis Sci. 2012;53:7710–7.

    Article  PubMed  Google Scholar 

  27. Ikuno Y, Maruko I, Yasuno Y, Miura M, Sekiryu T, Nishida K, et al. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:5536–40.

    Article  PubMed  Google Scholar 

  28. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147(5):811.

    Article  PubMed  Google Scholar 

  29. Manjunath V, Taha M, Fujimoto JG, Duker JS. Choroidal thickness in normal eyes measured using Cirrus HD optical coherence tomography. Am J Ophthalmol. 2010;150:325–9.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Agawa T, Miura M, Ikuno Y, Makita S, Fabritius T, Iwasaki T, et al. Choroidal thickness measurement in healthy Japanese subjects by three-dimensional high-penetration optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2011;249:1485–92.

    Article  PubMed  Google Scholar 

  31. Hirata M, Tsujikawa A, Matsumoto A, Hangai M, Ooto S, Yamashiro K, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):4971.

    Article  PubMed  Google Scholar 

  32. Esmaeelpour M, Povazay B, Hermann B, Hofer B, Kajic V, Kapoor K, et al. Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. Invest Ophthalmol Vis Sci. 2010;10:5260–6.

    Article  Google Scholar 

  33. Manjunath V, Goren J, Fujimoto JG, Duker JS. Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152:663–810.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Spaide RF. Age-related choroidal atrophy. Am J Ophthalmol. 2009;147:801–10.

    Article  PubMed  Google Scholar 

  35. Querques G, Querques L, Forte R, Massamba N, Coscas F, Souied EH. Choroidal changes associated with reticular pseudodrusen. Invest Ophthalmol Vis Sci. 2012;53:1258–63.

    Article  PubMed  Google Scholar 

  36. Rishi P, Rishi E, Mathur G, Raval V. Ocular perfusion pressure and choroidal thickness in eyes with polypoidal choroidal vasculopathy, wet-age-related macular degeneration, and normals. Eye (Lond). 2013;27:1038–43.

    Article  CAS  Google Scholar 

  37. Jirarattanasopa P, Ooto S, Nakata I, Tsujikawa A, Yamashiro K, Oishi A, et al. Choroidal thickness, vascular hyperpermeability, and complement factor H in age-related macular degeneration and polypoidal choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2012;53:3663–72.

    Article  CAS  PubMed  Google Scholar 

  38. Kim JT, Lee DH, Joe SG, Kim JG, Yoon YH. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2013;54:3378–84.

    Article  PubMed  Google Scholar 

  39. Querques G, Lattanzio R, Querques L, Del Turco C, Forte R, Pierro L, et al. Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci. 2012;53:6017–24.

    Article  PubMed  Google Scholar 

  40. Gemenetzi M, De Salvo G, Lotery AJ. Central serous chorioretinopathy: an update on pathogenesis and treatment. Eye. 2010;24:1743–56.

    Article  CAS  PubMed  Google Scholar 

  41. Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–73.

    Article  PubMed  Google Scholar 

  42. Manjunath V, Fujimoto JG, Duker JS. Cirrus HD-OCT high definition imaging is another tool available for visualization of the choroid and provides agreement with the finding that the choroidal thickness is increased in central serous chorioretinopathy in comparison to normal eyes. Retina. 2010;30:1320–1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kim SW, Oh J, Kwon SS, Yoo J, Huh K. Comparison of choroidal thickness among patients with healthy eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy. Retina. 2011;31:1904–11.

    Article  PubMed  Google Scholar 

  44. Yang L, Jonas JB, Wei W. Optical coherence tomography-assisted enhanced depth imaging of central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2013;54:4659–65.

    Article  PubMed  Google Scholar 

  45. Furlanetto RL, Park SC, Damle UJ, Fernando Sieminski S, Kung Y, Siegal N, et al. Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons. Invest Ophthalmol Vis Sci. 2013;54:4836–42.

    Article  PubMed  Google Scholar 

  46. Kiumehr S, Park SC, Syril D, Teng CC, Tello C, Liebmann JM, et al. In vivo evaluation of focal lamina cribrosa defects in glaucoma. Arch Ophthalmol. 2012;130:552–9.

    Article  PubMed  Google Scholar 

  47. Park SC, De Moraes CG, Teng CC, Tello C, Liebmann JM, Ritch R. Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma. Ophthalmology. 2012;119:3–9.

    Article  PubMed  Google Scholar 

  48. Maruko I, Iida T, Sugano Y, Oyamada H, Sekiryu T, Fujiwara T, et al. Subfoveal choroidal thickness after treatment of Vogt–Koyanagi–Harada disease. Retina. 2011;31:510–7.

    Article  PubMed  Google Scholar 

  49. Nakayama M, Keino H, Okada AA, Watanabe T, Taki W, Inoue M, et al. Enhanced depth imaging optical coherence tomography of the choroid in Vogt–Koyanagi–Harada disease. Retina. 2012;32:2061–9.

    Article  PubMed  Google Scholar 

  50. Fong AH, Li KK, Wong D. Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt–Koyanagi–Harada disease. Retina. 2011;31:502–9.

    Article  PubMed  Google Scholar 

  51. da Silva FT, Sakata VM, Nakashima A, Hirata CE, Olivalves E, Takahashi WY, et al. Enhanced depth imaging optical coherence tomography in long-standing Vogt–Koyanagi–Harada disease. Br J Ophthalmol. 2013;97:70–4.

    Article  PubMed  Google Scholar 

  52. Yasuno Y, Okamoto F, Kawana K, Yatagai T, Oshika T. Investigation of multifocal choroiditis with panuveitis by three- dimensional high-penetration optical coherence tomography. J Biophotonics. 2009;2:435–41.

    Article  PubMed  Google Scholar 

  53. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148:445–50.

    Article  PubMed  Google Scholar 

  54. Hayashi M, Ito Y, Takahashi A, Kawano K, Terasaki H. Scleral thickness in highly myopic eyes measured by enhanced depth imaging optical coherence tomography. Eye. 2013;27:410–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Imamura Y, Iida T, Maruko I, Zweifel SA, Spaide RF. Enhanced depth imaging optical coherence tomography of the sclera in dome-shaped macula. Am J Ophthalmol. 2011;151:297–302.

    Article  PubMed  Google Scholar 

  56. Ray R, Stinnett SS, Jaffe GJ. Evaluation of image artifact produced by optical coherence tomography of retinal pathology. Am J Ophthalmol. 2005;139:18–29.

    Article  PubMed  Google Scholar 

  57. Ho J, Castro DP, Castro LC, Chen Y, Liu J, Mattox C, et al. Clinical assessment of mirror artifacts in spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:3714–20.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Waldstein SM, Gerendas BS, Montuoro A, Simader C, Schmidt-Erfurth U. Quantitative comparison of macular segmentation performance using identical retinal regions across multiple spectral-domain optical coherence tomography instruments. Br J Ophthalmol. 2015;99:794–800.

    Article  PubMed  Google Scholar 

  59. Karam EZ, Ramirez E, Arreaza PL, Morales-Stopello J. Optical coherence tomography artefacts in diseases of the retinal pigment epithelium. Br J Ophthalmol. 2007;91:1139–42.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedra Hajizadeh M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hajizadeh, F., Kafieh, R. (2018). Introduction to Optical Coherence Tomography. In: Hajizadeh, F. (eds) Atlas of Ocular Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-66757-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66757-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66756-0

  • Online ISBN: 978-3-319-66757-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics