Skip to main content

Microalgae for Industrial Purposes

  • Chapter
  • First Online:
Biomass and Green Chemistry

Abstract

The use of microalgae for the production of compounds of commercial relevance has received substantial interest in recent years, mostly because these organisms contain a plethora of valuable compounds and their high turnover rate and functional plasticity make them relatively easy to cultivate for the production of biomass and added-value molecules. The metabolic flexibility of algae allows using them for many commercial applications, but it also makes it easy for cultures to diverge from the intended biomass quality. A thorough comprehension of the principles that control growth and carbon allocation is therefore of paramount importance for effective production of algal biomass and derived chemicals. In this review, we intend to provide basic but exhaustive information on how algae grow and on their biotechnological potential. In addition to this primary goal, we also give the reader a succinct panorama of culturing systems and possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adam F, Abert-Vian M, Peltier G, Chemat F (2012) “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresour Technol 114:457–465

    Article  CAS  Google Scholar 

  • Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust Energ Rev 15(1):584–593. https://doi.org/10.1016/j.rser.2010.09.018

    Article  CAS  Google Scholar 

  • Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88(10):3402–3410. https://doi.org/10.1016/j.apenergy.2010.12.014

    Article  CAS  Google Scholar 

  • An HJ, Rim HK, Lee JH, Seo MJ, Hong JW, Kim NH, Myung NY, Moon PD, Choi IY, Na HJ (2008) Effect of Chlorella vulgaris on immune-enhancement and cytokine production in vivo and in vitro. Food Sci Biotechnol 17(5):953–958

    CAS  Google Scholar 

  • Anandarajah K, Mahendraperumal G, Sommerfeld M, Hu Q (2012) Characterization of microalga Nannochloropsis sp. mutants for improved production of biofuels. Appl Energy 96(0):371–377. https://doi.org/10.1016/j.apenergy.2012.02.057

    Article  CAS  Google Scholar 

  • Bagchi D, Garg A, Krohn RL, Bagchi M, Tran MX, Stohs SJ (2001) Oxygen free radical scavenging abilities of vitamins C, E, β-carotene, pycnogenol, grape seed proanthocyanidin extract and astaxanthins in vitro. Res Commun Mol Pathol Pharmacol 95(2):179–189

    Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215

    Article  CAS  Google Scholar 

  • Beardall J, Giordano M (2002) Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Funct Plant Biol 29(2-3):335–347

    Article  CAS  Google Scholar 

  • Beardall J, Raven JA (2016) Carbon acquisition by microalgae. In: The physiology of microalgae. Springer, Cham

    Google Scholar 

  • Behrebs P (2005) Photobioreactors and fermenters: the light and dark sides of growing algae. In: Andersen RA (ed) Algal culturing techniques. Academic Press, Burlington

    Google Scholar 

  • Ben-Amotz A (2004) Industrial production of microalgal cell-mass and secondary products major industrial species. In: Richmond A (ed) Handbook of microalgal culture biotechnology and applied phycology. Blackwell, Oxford, pp 273–280

    Google Scholar 

  • Benemann JR (2013) Microalgae for biofuels and animal feeds. Biotechnol Bioeng 110(9):2319–2321

    Google Scholar 

  • Berla BM, Rajib S, Immethun CM, Maranas CD, Seok MT, Pakrasi HB (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4:246

    Article  Google Scholar 

  • Beuckels A, Depraetere O, Vandamme D, Foubert I, Smolders E, Muylaert K (2013) Influence of organic matter on flocculation of Chlorella vulgaris by calcium phosphate precipitation. Biomass Bioenergy 54:107–114

    Article  CAS  Google Scholar 

  • Bigelow TA, Xu J, Stessman DJ, Yao L, Spalding MH, Wang T (2014) Lysis of Chlamydomonas reinhardtii by high-intensity focused ultrasound as a function of exposure time. Ultrason Sonochem 21(3):1258–1264

    Article  CAS  Google Scholar 

  • Bibia R, Ahmad Z, Imran M, Hussain S, Ditta A, Mahmood S, Khalid A (2017) Algal bioethanol production technology: a trend towards sustainable development. Renew Sustain Energy Rev 7:976–985

    Google Scholar 

  • Blank CE, Sanchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the cyanobacteria–a key to understanding the rise in atmospheric oxygen. Geobiology 8(1):1–23

    Article  CAS  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1-3):313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: The physiology of microalgae. Springer, Cham

    Chapter  Google Scholar 

  • Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45(3):716–722

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Brodie J, Chan CX, De Clerck O, Cock JM, Coelho SM, Gachon C, Grossman AR, Mock T, Raven JA, Smith AG, Yoon HS, Bhattacharya D (2017) The algal revolution. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2017.05.005

  • Cabanelas ITD, Ruiz J, Arbib Z, Chinalia FA, Garrido-Perez C, Rogalla F, Nascimento IA, Perales JA (2013) Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour Technol 131:429–436. https://doi.org/10.1016/j.biortech.2012.12.152

    Article  CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19(0):360–369. https://doi.org/10.1016/j.rser.2012.11.030

    Article  CAS  Google Scholar 

  • Chen Y, Wang J, Zhang W, Chen L, Gao L, Liu T (2013) Forced light/dark circulation operation of open pond for microalgae cultivation. Biomass Bioenergy 56(56):464–470

    Article  CAS  Google Scholar 

  • Chen M, Zhang L, Li S, Chang S, Wang W, Zhang Z, Wang J, Gang Z, Qi L, Xu W (2014) Characterization of cell growth and photobiological H2 production of Chlamydomonas reinhardtii in ASSF industry wastewater. Int J Hydrog Energy 39(25):13462–13467

    Article  CAS  Google Scholar 

  • Chen H, Hu J, Qiao Y, Chen W, Rong J, Zhang Y, He C, Wang Q (2015a) Ca2+-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga. Sci Rep 5:15117. https://doi.org/10.1038/srep15117. http://www.nature.com/articles/srep15117#supplementary-information

    Article  CAS  Google Scholar 

  • Chen H, Qiu T, Rong J, He C, Wang Q (2015b) Microalgal biofuel revisited: an informatics-based analysis of developments to date and future prospects. Appl Energy 155:585–598. https://doi.org/10.1016/j.apenergy.2015.06.055

    Article  CAS  Google Scholar 

  • Chen WX, Zhang SS, Rong JF, Li X, Chen H, He CL, Wang Q (2016) Effective biological DeNOx of industrial flue gas by the mixotrophic cultivation of an oil-producing green alga Chlorella sp. C2. Environ Sci Technol 50(3):1620–1627. https://doi.org/10.1021/acs.est.5b04696

    Article  CAS  Google Scholar 

  • Cheng HX, Tian GM, Liu JZ (2013) Enhancement of biomass productivity and nutrients removal from pretreated piggery wastewater by mixotrophic cultivation of Desmodesmus sp. CHX1. Desalin Water Treat 51(37-39):7004–7011. https://doi.org/10.1080/19443994.2013.769917

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  • Chojnacka K, Marquez-Rocha FJ (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3:21–34

    Article  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2004) Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy 73(1):147–153

    Article  CAS  Google Scholar 

  • Chung BY, Deery MJ, Groen AJ, Howard J, Baulcombe DC (2016) mRNA turnover through CDS-targeting is the primary role of miRNA in the green alga Chlamydomonas. bioRxiv. https://doi.org/10.1101/088807

  • Coons JE, Kalb DM, Dale T, Marrone BL (2014) Getting to low-cost algal biofuels: a monograph on conventional and cutting-edge harvesting and extraction technologies. Algal Res 6:250–270

    Article  Google Scholar 

  • Cooper MS, Hardin WR, Petersen TW, Cattolico RA (2010) Visualizing “green oil” in live algal cells. J Biosci Bioeng 109(2):198–201. https://doi.org/10.1016/j.jbiosc.2009.08.004

    Article  CAS  Google Scholar 

  • Cottin SC, Sanders TA, Hall WL (2011) The differential effects of EPA and DHA on cardiovascular risk factors. Proc Nutr Soc 70(2):215

    Article  CAS  Google Scholar 

  • Cyrus MD, Bolton JJ, Scholtz R, Macey BM (2015) The advantages of Ulva (Chlorophyta) as an additive in sea urchin formulated feeds: effects on palatability, consumption and digestibility. Aquacult Nutr 21(5):578–591

    Article  CAS  Google Scholar 

  • Daboussi F, Leduc S, Marechal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831

    Article  CAS  Google Scholar 

  • Dang-Thuan T, Chen CL, Chang JS (2013) Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour Technol 135:213–221. https://doi.org/10.1016/j.biortech.2012.09.101

    Article  CAS  Google Scholar 

  • de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury JM, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horak A, Jaillon O, Lima-Mendez G, Lukes J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E, Coordinators TO (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237). doi:https://doi.org/10.1126/science.1261605

  • Dębowski M, Zieliński M, Grala A, Dudek M (2013) Algae biomass as an alternative substrate in biogas production technologies: review. Renew Sust Energ Rev 27:596–604

    Article  CAS  Google Scholar 

  • Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74(6):1163–1174

    Article  CAS  Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50(1):14–34. https://doi.org/10.1016/j.enconman.2008.09.001

    Article  CAS  Google Scholar 

  • Devi MP, Mohan SV (2012) CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresour Technol 112:116–123. https://doi.org/10.1016/j.biortech.2012.02.095

    Article  CAS  Google Scholar 

  • Domenighini A, Giordano M (2009) Fourier transform infrared spectroscopy of microalgae as a novel tool for biodiversity studies, species identification, and the assessment of water quality. J Phycol 45(2):522–531

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a middle and southern European climate. J Appl Phycol 18(6):811–826

    Article  CAS  Google Scholar 

  • Doucha J, Lívanský K (2008) Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81(3):431–440

    Article  CAS  Google Scholar 

  • Elbermawi NM (2009) Using Dunaliella salina extract to improve survival, stress tolerance and growth performance of freshwater prawn Macrobrachium rosenbergii. Egypt J Nutr Feeds 12(1):113–125

    Google Scholar 

  • Elser JJ, Acquisti C, Kumar S (2011) Stoichiogenomics: the evolutionary ecology of macromolecular elemental composition. Trends Ecol Evol 26(1):38–44

    Article  Google Scholar 

  • Emanuel SL, Francisco OC, Aurora G, Emilio F, Amaury DM (2016) Characterization of a mutant deficient for ammonium and nitric oxide signalling in the model system Chlamydomonas reinhardtii. PLoS One 11(5):e0155128

    Article  CAS  Google Scholar 

  • Enzing C, Ploeg M, Barbosa M, Sijtsma L (2014) Microalgae-based products for the food and feed sector: an outlook for Europe. JRC Scientific and Policy Reports. Report EUR 26255 EN. European Union 2014. doi:https://doi.org/10.2791/3339

  • Eroglu E, Melis A (2016) Microalgal hydrogen production research. Int J Hydrog Energy 41(30):12772–12798. https://doi.org/10.1016/j.ijhydene.2016.05.115

    Article  CAS  Google Scholar 

  • Fanesi A, Raven JA, Giordano M (2014) Growth rate affects the responses of the green alga Tetraselmis suecica to external perturbations. Plant Cell Environ 37(2):512–519

    Article  CAS  Google Scholar 

  • Farrelly DJ, Brennan L, Everard CD, McDonnell KP (2014) Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-013-5322-y

  • Farias Silva CE, Bertucco A (2016) Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem 51:1833–1842

    Google Scholar 

  • Flynn KJ, Raven JA, Rees TAV, Finkel Z, Quigg A, Beardall J (2010) Is the growth rate hypothesis applicable to microalgae? J Phycol 46(1):1–12

    Article  CAS  Google Scholar 

  • Frigon J-C, Matteau-Lebrun F, Hamani Abdou R, McGinn PJ, O’Leary SJB, Guiot SR (2013) Screening microalgae strains for their productivity in methane following anaerobic digestion. Appl Energy 108(0):100–107. https://doi.org/10.1016/j.apenergy.2013.02.051

    Article  CAS  Google Scholar 

  • Fritz A, Pitchon V (1997) The current state of research on automotive lean NOx catalysis. Appl Catal B Environ 13(1):1–25

    Article  CAS  Google Scholar 

  • Ganuza E, Benítez-Santana T, Atalah E, Vega-Orellana O, Ganga R, Izquierdo MS (2008) Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture 277(1-2):109–116

    Article  CAS  Google Scholar 

  • Geider RJ, La Roche J (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37(1):1–17

    Article  Google Scholar 

  • Gentil J, Hempel F, Moog D, Zauner S, Maier UG (2017) Origin of complex algae by secondary endosymbiosis: a journey through time. Protoplasma 254:1835–1843

    Google Scholar 

  • Giordano M (2013) Homeostasis: an underestimated focal point of ecology and evolution. Plant Sci 211:92–101

    Article  CAS  Google Scholar 

  • Giordano M, Ratti S (2013) The biomass quality of algae used for CO2 sequestration is highly species-specific and may vary over time. J Appl Phycol 25(5):1431–1434

    Article  CAS  Google Scholar 

  • Giordano M, Kansiz M, Heraud P, Beardall J, Wood B, McNaughton D (2001) Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae). J Phycol 37(2):271–279

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  Google Scholar 

  • Giordano M, Palmucci M, Norici A (2015a) Taxonomy and growth conditions concur to determine the energetic suitability of algal fatty acid complements. J Appl Phycol 27(4):1401–1413

    Article  CAS  Google Scholar 

  • Giordano M, Palmucci M, Raven JA (2015b) Growth rate hypothesis and efficiency of protein synthesis under different sulphate concentrations in two green algae. Plant Cell Environ 38(11):2313–2317

    Article  CAS  Google Scholar 

  • Giordano M, Raven JA (2014) Nitrogen and sulfur assimilation in plants and algae. Aquat Bot 118:45–61. https://doi.org/10.1016/j.aquabot.2014.06.012

  • Giordano M, Norici A, Beardall J (2017) Impact of inhibitors of amino acid, protein, and RNA synthesis on C allocation in the diatom Chaetoceros muellerii: a FTIR approach. Algae 32(2):161–170. https://doi.org/10.4490/algae.2017.32.6.6

    Article  Google Scholar 

  • Gómez PI, Inostroza I, Pizarro M, Pérez J (2013) From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin. AoB Plants 5(1):plt026

    Google Scholar 

  • Gomez C, Escudero R, Morales MM, Figueroa FL, Fernandez-Sevilla JM, Acien FG (2013) Use of secondary-treated wastewater for the production of Muriellopsis sp. Appl Microbiol Biotechnol 97(5):2239–2249. https://doi.org/10.1007/s00253-012-4634-7

    Article  CAS  Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174(3):246–263. https://doi.org/10.1016/j.plantsci.2007.11.009

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2009) From laboratory to commercial production: a case study of a Spirulina (Arthrospira) facility in Musina, South Africa. J Appl Phycol 21(5):523–527

    Article  CAS  Google Scholar 

  • Groza I, Boldijar A, Vlad G (1966) Chlorella vulgaris an important source of protein and vitamins in animal feeding. Revista Zooteh Med Vet 7:24–26

    Google Scholar 

  • Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Buschmann AH, Yarish C, Edwards MD, Critchley AT (2015) Prospects and challenges for industrial production of seaweed bioactives. J Phycol 51(5):821

    Article  CAS  Google Scholar 

  • Hagen C, Grunewald K (2001) Compartmentation of astaxanthin biosynthesis in Haematococcus pluvialis. Sci Access 3(1). https://doi.org/10.1071/SA0403037

  • Hamouda RA, Yeheia DS, Hussein MH, Hamzah HA (2016) Removal of heavy metals and production of bioethanol by green alga Scenedesmus obliquus grown in different concentrations of wastewater. Sains Malays 45(3):467–476

    Google Scholar 

  • Harnedy PA, Fitzgerald RJ (2011) Bioactive proteins, peptides, and amino acids from macroalgae. J Phycol 47(2):218

    Article  CAS  Google Scholar 

  • Hellingwerf KJ, De Mattos MJT (2009) Alternative routes to biofuels: light-driven biofuel formation from CO2 and water based on the ‘photanol’ approach. J Biotechnol 142:87–90

    Google Scholar 

  • Ho TY, Quigg A, Finkel ZV, Milligan AJ, Wyman K, Falkowski PG, Morel FMM (2010) The elemental composition of some marine phytoplankton. J Phycol 39(6):1145–1159

    Article  Google Scholar 

  • Holbrook GP, Davidson Z, Tatara RA, Ziemer NL, Rosentrater KA, Scott Grayburn W (2014) Use of the microalga Monoraphidium sp. grown in wastewater as a feedstock for biodiesel: cultivation and fuel characteristics. Appl Energy 131(0):386–393. https://doi.org/10.1016/j.apenergy.2014.06.043

    Article  CAS  Google Scholar 

  • Hopes A, Nekrasov V, Kamoun S, Mock T (2016) Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. Plant Methods 12:49

    Article  CAS  Google Scholar 

  • Huang CH, Shen CR, Li H, Sung LY, Wu MY, Hu YC (2016) CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb Cell Factories 15(1):196

    Article  CAS  Google Scholar 

  • Iwai M, Ikeda K, Shimojima M, Ohta H (2014) Enhancement of extraplastidic oil synthesis in Chlamydomonas reinhardtii using a type-2 diacylglycerol acyltransferase with a phosphorus starvation-inducible promoter. Plant Biotechnol J 12(6):808–819. https://doi.org/10.1111/Pbi.12210

    Article  CAS  Google Scholar 

  • Jacob A, Xia A, Murphy JD (2015) ChemInform abstract: a perspective on gaseous biofuel production from micro-algae generated from CO2 from a coal-fired power plant. ChemInform 148(51):396–402

    CAS  Google Scholar 

  • Jacob-Lopes E, Scoparo CHG, Queiroz MI, Franco TT (2010) Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manag 51(5):894–900

    Article  CAS  Google Scholar 

  • Jebsen C, Norici A, Wagner H, Palmucci M, Giordano M, Wilhelm C (2012) FTIR spectra of algal species can be used as physiological fingerprints to assess their actual growth potential. Physiol Plant 146(4):427–438

    Article  CAS  Google Scholar 

  • Jin H-F, Santiago DEO, Park J, Lee K (2008) Enhancement of nitric oxide solubility using Fe(II)-EDTA and its removal by green algae Scenedesmus sp. Biotechnol Bioprocess Eng 13(1):48–52. https://doi.org/10.1007/s12257-007-0164-z

    Article  CAS  Google Scholar 

  • Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45(2):219–226

    Article  Google Scholar 

  • Kaffes N, Thoms S, Trimborn S, Rost B, Richter K-U, Köhler A, Norici A, Giordano M (2010) Carbon and nitrogen fluxes in the marine coccolithophore Emiliania huxleyi grown under different nitrate concentrations. J Exp Mar Biol Ecol 393:1–8. https://doi.org/10.1016/j.jembe.2010.06.004

  • Kanda H, Li P, Yoshimura T, Okada S (2013) Wet extraction of hydrocarbons from Botryococcus braunii by dimethyl ether as compared with dry extraction by hexane. Fuel 105:535–539. https://doi.org/10.1016/j.fuel.2012.08.032

    Article  CAS  Google Scholar 

  • Kandimalla P, Desi S, Vurimindi H (2016) Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Environ Sci Pollut Res 23(10):9345–9354

    Article  CAS  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582. https://doi.org/10.1016/j.enzmictec.2005.09.015

    Article  CAS  Google Scholar 

  • Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102(18):8557–8568. https://doi.org/10.1016/j.biortech.2011.04.004

    Article  CAS  Google Scholar 

  • Kilian O, Benemann CSE, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA 108(52):21265–21269

    Article  CAS  Google Scholar 

  • Knies JM (2017) Algae and algal products as novel foods. Ernahr Umsch 64(2):M84–M93

    Google Scholar 

  • Knoll AH (2003) Biomineralization and evolutionary history. Rev Mineral Geochem 54(1):329–356. https://doi.org/10.2113/054032

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380. https://doi.org/10.1016/j.tibtech.2010.04.004

    Article  CAS  Google Scholar 

  • Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20(5):101

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28(4):500–518

    Article  CAS  Google Scholar 

  • Lane N (2017) Serial endosymbiosis or singular event at the origin of eukaryotes? J Theor Biol 434:58–67

    Google Scholar 

  • Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  CAS  Google Scholar 

  • Lee Chang KJ, Nichols CM, Blackburn SI, Dunstan GA, Koutoulis A, Nichols PD (2014) Comparison of thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for production of biodiesel, long-chain omega-3 oils, and exopolysaccharide. Mar Biotechnol 16(4):396–411

    Article  CAS  Google Scholar 

  • Lee WNP, Wahjudi PN, Xu J, Go VL (2010) Tracer-based metabolomics: concepts and practices. Clin Biochem 43(16-17):1269–1277

    Article  CAS  Google Scholar 

  • Lee YC, Kim B, Farooq W, Chung J, Han JI, Shin HJ, Jeong SH, Park JY, Lee JS, YK O (2013) Harvesting of oleaginous Chlorella sp. by organoclays. Bioresour Technol 132:440–445. https://doi.org/10.1016/j.biortech.2013.01.102

    Article  CAS  Google Scholar 

  • Lee KY, Ng TW, Li GY, An TC, Kwan KK, Chan KM, Huang GC, Yip HY, Wong PK (2015) Simultaneous nutrient removal, optimised CO2 mitigation and biofuel feedstock production by Chlorogonium sp. grown in secondary treated non-sterile saline sewage effluent. J Hazard Mater 297:241–250

    Article  CAS  Google Scholar 

  • Li J, Liu Y, Cheng JJ, Mos M, Daroch M (2015) Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds. New Biotechnol 32(6):588

    Article  CAS  Google Scholar 

  • Li T, Xu G, Rong J, Chen H, He C, Giordano M, Wang Q (2016) The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases. J Plant Physiol 195:73–79

    Article  CAS  Google Scholar 

  • Liu J, Hu Q (2013) Chlorella: industrial production of cell mass and chemicals. In: Handbook of microalgal culture: applied phycology and biotechnology. Wiley, Chichester

    Google Scholar 

  • Liu Z, Zhang F, Chen F (2013) High throughput screening of CO2-tolerating microalgae using GasPak bags. Aquat Biosyst 9(1):23. https://doi.org/10.1186/2046-9063-9-23

    Article  CAS  Google Scholar 

  • Loladze I, Elser JJ (2011) The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecol Lett 14(3):244–250

    Article  Google Scholar 

  • Lu YM, Xiang WZ, Wen YH (2011) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23(2):265

    Article  Google Scholar 

  • Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2010) Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J Phycol 36(3):510–522

    Article  Google Scholar 

  • Marcus Y, Altmangueta H, Wolff Y, Gurevitz M (2011) Rubisco mutagenesis provides new insight into limitations on photosynthesis and growth in Synechocystis PCC6803. J Exp Bot 62(12):4173–4182

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232. https://doi.org/10.1016/j.rser.2009.07.020

    Article  CAS  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959

    Google Scholar 

  • Memmola F, Mukherjee B, Moroney JV, Giordano M (2014) Carbon allocation and metal use in four Chlamydomonas mutants defective in CCM-related genes. Photosynth Res 121:111–124

    Article  CAS  Google Scholar 

  • Miao HF, Wang SQ, Zhao MX, Huang ZX, Ren HY, Yan Q, Ruan WQ (2014) Codigestion of Taihu blue algae with swine manure for biogas production. Energy Convers Manag 77:643–649

    Article  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature (Lond) 191(478):144–148

    Article  CAS  Google Scholar 

  • Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D, Stoecker DK, Not F, Hansen PJ, Hallegraeff G, Sanders R, Wilken S, McManus G, Johnson M, Pitta P, Vage S, Berge T, Calbet A, Thingstad F, Jeong HJ, Burkholder J, Glibert PM, Graneli E, Lundgren V (2016) Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: incorporation of diverse mixotrophic strategies. Protist 167(2):106–120

    Article  CAS  Google Scholar 

  • Montechiaro F, Giordano M (2010) Compositional homeostasis of the dinoflagellate Protoceratium reticulatum grown at three different pCO2. J Plant Physiol 167(2):110–113

    Article  CAS  Google Scholar 

  • Mooij TD, Janssen M, Cerezo-Chinarro O, Mussgnug JH, Kruse O, Ballottari M, Bassi R, Bujaldon S, Wollman FA, Wijffels RH (2015) Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. J Appl Phycol 27(3):1063–1077

    Article  CAS  Google Scholar 

  • Mouahid A, Crampon C, Toudji SAA, Badens E (2013) Supercritical CO2 extraction of neutral lipids from microalgae: experiments and modelling. J Supercrit Fluids 77:7–16. https://doi.org/10.1016/j.supflu.2013.01.024

    Article  CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schluter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150(1):51–56

    Article  CAS  Google Scholar 

  • Nagase H, Yoshihara K, Eguchi K, Okamoto Y, Murasaki S, Yamashita R, Hirata K, Miyamoto K (2001) Uptake pathway and continuous removal of nitric oxide from flue gas using microalgae. Biochem Eng J 7(3):241–246. https://doi.org/10.1016/S1369-703x(00)00122-4

    Article  CAS  Google Scholar 

  • Nakagawa H (1997) Effect of dietary algae on improvement of lipid metabolism in fish. Biomed Pharmacother 51(8):345–348

    Article  CAS  Google Scholar 

  • Nayak M, Karemore A, Sen R (2016) Sustainable valorization of flue gas CO2 and wastewater for the production of microalgal biomass as a biofuel feedstock in closed and open reactor systems. RSC Adv 6(94):91111–91120

    Article  CAS  Google Scholar 

  • Ngan CY, Wong CH, Choi C, Yoshinaga Y, Louie K, Jia J, Chen C, Bowen B, Cheng HY, Leonelli L, Kuo R, Baran R, Garcia-Cerdan JG, Pratap A, Wang M, Lim J, Tice H, Daum C, Xu J, Northen T, Visel A, Bristow J, Niyogi KK, Wei CL (2015) Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. Nat Plants 1(8):15107

    Article  CAS  Google Scholar 

  • Nicklisch A, Steinberg CEW (2009) RNA/protein and RNA/DNA ratios determined by flow cytometry and their relationship to growth limitation of selected planktonic algae in culture. Eur J Phycol 44:297–308. https://doi.org/10.1080/09670260802578518

  • Nielsen A (2015) Treatment of wastewater with microalgae under mixotrophic growth: a focus on removal of DOC from municipal and industrial wastewater. Degree thesis in Geoecology, Umeå University

    Google Scholar 

  • Niu HJY, Leung DYC (2010) A review on the removal of nitrogen oxides from polluted flow by bioreactors. Environ Rev 18:175–189. https://doi.org/10.1139/A10-007

    Article  CAS  Google Scholar 

  • Norambuena F, Hermon K, Skrzypczyk V, Emery JA, Sharon Y, Beard A, Turchini GM (2015) Algae in fish feed: performances and fatty acid metabolism in juvenile Atlantic salmon. PLoS One 10(4):e0124042

    Article  CAS  Google Scholar 

  • Norici A, Bazzoni AM, Pugnetti A, Raven JA, Giordano M (2011) Impact of irradiance on the C allocation in the coastal marine diatom Skeletonema marinoi Sarno and Zingone. Plant Cell Environ 34(10):1666–1677

    Article  CAS  Google Scholar 

  • Norici A, Hell R, Giordano M (2005) Sulfur and primary production in aquatic environments: an ecophysiological perspective. Photosynth Res 85:409–417. https://doi.org/10.1007/s11120-005-3250-0

  • Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951

    Article  CAS  Google Scholar 

  • Packer MA, Harris GC, Adams SL (2016) Food and feed applications of algae. In: Bux F, Chisti Y (eds) Algae biotechnology, Green Energy and Technology. Springer, Cham

    Google Scholar 

  • Palmucci M, Giordano M (2012) Is cell composition related to the phylogenesis of microalgae? An investigation using hierarchical cluster analysis of Fourier transform infrared spectra of whole cells. Environ Exp Bot 75:220–224

    Article  CAS  Google Scholar 

  • Palmucci M, Ratti S, Giordano M (2011) Ecological and evolutionary implications of carbon allocation in marine phytoplankton as a function of nitrogen availability: a Fourier transform infrared spectroscopy approach. J Phycol 47(2):313–323

    Article  Google Scholar 

  • Pangestuti R, Kim SK (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 3(4):255–266

    Article  CAS  Google Scholar 

  • Peralta-Ruiz Y, González-Delgado AD, Kafarov V (2013) Evaluation of alternatives for microalgae oil extraction based on exergy analysis. Appl Energy 101(0):226–236. https://doi.org/10.1016/j.apenergy.2012.06.065

    Article  Google Scholar 

  • Perazzoli S, Bruchez BM, Michelon W, Steinmetz RLR, Mezzari MP, Nunes EO, da Silva MLB (2016) Optimizing biomethane production from anaerobic degradation of Scenedesmus spp. biomass harvested from algae-based swine digestate treatment. Int Biodeter Biodegr 109:23–28

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FM, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Article  CAS  Google Scholar 

  • Pires JCM, Alvim-Ferraz MCM, Martins FG (2017) Photobioreactor design for microalgae production through computational fluid dynamics: a review. Renew Sust Energ Rev 79:248–254

    Article  CAS  Google Scholar 

  • Poulsen N, Chesley PM, Kröger N (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 42(5):1059–1065

    Article  Google Scholar 

  • Prioretti L, Giordano M (2016) Direct and indirect influence of sulfur availability on phytoplankton evolutionary trajectories. J Phycol 52:1094–1102

    Google Scholar 

  • Qi F, Pei HY, Hu WR, Mu RM, Zhang S (2016) Characterization of a microalgal mutant for CO2 biofixation and biofuel production. Energy Convers Manag 122:344–349

    Article  CAS  Google Scholar 

  • Qiao Y, Rong J, Chen H, He C, Wang Q (2015) Non-invasive rapid harvest time determination of oil-producing microalgae cultivations for biodiesel production by using chlorophyll fluorescence. Front Energy Res 3:44

    Google Scholar 

  • Quigg A, Finkel ZV, Irwin AJ, Rosenthal Y, Ho TY, Reinfelder JR, Schofield O, Morel FMM, Falkowski PG (2003) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature (Lond) 425(6955):291–294

    Article  CAS  Google Scholar 

  • Quigg A, Irwin AJ, Finkel ZV (2011) Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proc R Soc Lond B Biol Sci 278(1705):526–534

    Article  Google Scholar 

  • Rajvanshi S, Sharma MP (2012) Micro algae: a potential source of biodiesel. J Sustain Bioenergy Syst 2(3):49–59

    Article  CAS  Google Scholar 

  • Ramey CJ, Barón-Sola Á, Aucoin HR, Boyle NR (2015) Genome engineering in cyanobacteria: where we are and where we need to go. ACS Synth Biol 4(11):1186

    Article  CAS  Google Scholar 

  • Rasala BA, Chao SS, Pier M, Barrera DJ, Mayfield SP (2014) Enhanced genetic tools for engineering multigene traits into green algae. PLoS One 9(4):e94028

    Article  CAS  Google Scholar 

  • Ratti S, Knoll AH, Giordano M (2011) Did sulfate availability facilitate the evolutionary expansion of chlorophyll a+c phytoplankton in the oceans? Geobiology 9(4):301–312. https://doi.org/10.1111/j.1472-4669.2011.00284.x

  • Raven JA (1995) Costs and benefits of low intracellular osmolarity in cells of fresh-water algae. Funct Ecol 9(5):701–707

    Article  Google Scholar 

  • Raven JA (1997) Inorganic carbon acquisition by marine autotrophs. Adv Bot Res 27:85–209

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J (2016) Dark respiration and organic carbon loss. In: The physiology of microalgae. Springer, Cham

    Google Scholar 

  • Raven JA, Geider RJ (2003) Adaptation, acclimation and regulation in algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae, Advances in photosynthesis and respiration, vol 14. Springer, Dordrecht

    Google Scholar 

  • Raven JA, Giordano M (2014) Algae. Curr Biol 24(13):R590–R595. https://doi.org/10.1016/j.cub.2014.05.039

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M (2016) Combined nitrogen. In: Borowitzka M, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Cham, pp 143–154

    Chapter  Google Scholar 

  • Raven JA, Ball LA, Beardall J, Giordano M, Maberly SC (2005) Algae lacking carbon-concentrating mechanisms. Can J Bot 83(7):879–890

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J (2008) Insights into the evolution of CCMs from comparisons with other resource acquisition and assimilation processes. Physiol Plant 133(1):4–14

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J, Flynn KJ, Maberly SC (2009) Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot 60(14):3975–3987

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2011) Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109(1-3):281–296

    Article  CAS  Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos Trans R Soc Lond B Biol Sci 367(1588):493–507

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J, Larkum AWD, Sanchez-Baracaldo P (2013) Interactions of photosynthesis with genome size and function. Philos Trans R Soc Lond B Biol Sci 368(1622):20120264

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J, Giordano M (2014) Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth Res 121(2-3):111–124

    Article  CAS  Google Scholar 

  • Redfield AC (1934) The haemocyanins. Biol Rev Camb Philos Soc 9(2):175–212

    Article  CAS  Google Scholar 

  • Reed RH, Warr SRC, Richardson DL, Moore DJ, Stewart WDP (1985) Blue-green algae (cyanobacteria): prospects and perspectives. Plant Soil 89(1):97–106

    Article  CAS  Google Scholar 

  • Richardson JW, Johnson MD, Outlaw JL (2012) Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the southwest. Algal Res 1(1):93–100

    Article  Google Scholar 

  • Richmond AE (1986) Microalgaculture. Crit Rev Biotechnol 4:369–438. https://doi.org/10.3109/07388558609150800

  • Ruan Z, Giordano M (2017) The use of NH4 + rather than NO3 affects cell stoichiometry, C allocation, photosynthesis and growth in the cyanobacterium Synechococcus sp. UTEX LB 2380, only when energy is limiting. Plant Cell Environ 40:227–236

    Article  CAS  Google Scholar 

  • Ruan Z, Raven JA, Giordano M (2017) In Synechococcus sp. competition for energy between assimilation and acquisition of C and those of N only occurs when growth is light limited. J Exp Bot 68(14):38293839

    Article  Google Scholar 

  • Saad SM, Yusof YAM, Ngah WZW (2006) Comparison between locally produced Chlorella vulgaris and Chlorella vulgaris from Japan on proliferation and apoptosis of liver cancer cell line, HepG2. Malays J Biochem Mol Biol 13:32–36

    Google Scholar 

  • Saeid A, Chojnacka K, Korczyński M, Korniewicz D, Dobrzański Z (2013) Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. J Appl Phycol 25(2):667–675

    Article  CAS  Google Scholar 

  • Samarasinghe N, Fernando S, Lacey R, Faulkner WB (2012) Algal cell rupture using high pressure homogenization as a prelude to oil extraction. Renew Energy 48:300–308

    Article  CAS  Google Scholar 

  • Santiago DE, Jin H-F, Lee K (2010) The influence of ferrous-complexed EDTA as a solubilization agent and its auto-regeneration on the removal of nitric oxide gas through the culture of green alga Scenedesmus sp. Process Biochem 45(12):1949–1953

    Article  CAS  Google Scholar 

  • Sathish A, Smith BR, Sims RC (2014) Effect of moisture on in situ transesterification of microalgae for biodiesel production. J Chem Technol Biotechnol 89(1):137–142. https://doi.org/10.1002/jctb.4125

    Article  CAS  Google Scholar 

  • Savakis P, Hellingwerf KJ (2015) Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol 33(33):8–14

    Article  CAS  Google Scholar 

  • Scaife MA, Nguyen GTDT, Rico J, Lambert D, Helliwell KE, Smith AG (2015) Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J 82:532–546

    Google Scholar 

  • Schmollinger S, Merchant SS (2014) Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26(4):1410–1435

    Article  CAS  Google Scholar 

  • Sheng J, Vannela R, Rittmann BE (2011) Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. Environ Sci Technol 45(8):3795–3802

    Article  CAS  Google Scholar 

  • Shields RJ, Lupatsch I (2012) Algae for aquaculture and animal feeds. Technikfolgenabschätzung – Theorie Und Praxis 21(1):23–37

    Google Scholar 

  • Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    Article  CAS  Google Scholar 

  • Sinéad L, Paul RR, Catherine S (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9(6):1056–1100

    Google Scholar 

  • Singh J, Cu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610

    Article  CAS  Google Scholar 

  • Singh UB, Ahluwalia AS (2013) Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strat Glob Chang 18:73–79

    Google Scholar 

  • Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73(5):873–882

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. https://doi.org/10.1263/Jbb.101.87

    Article  CAS  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley-Interscience, New York. 780 pp

    Google Scholar 

  • Sun T, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Google Scholar 

  • Sun X, Wang C, Li Z, Wang W, Tong Y, Wei J (2013) Microalgal cultivation in wastewater from the fermentation effluent in riboflavin (B2) manufacturing for biodiesel production. Bioresour Technol 143:499–504

    Article  CAS  Google Scholar 

  • Tibbetts SM, Yasumaru F, Lemos D (2017) In vitro prediction of digestible protein content of marine microalgae (Nannochloropsis granulata) meals for Pacific white shrimp (Litopenaeus vannamei) and rainbow trout (Oncorhynchus mykiss). Algal Res 21:76–80

    Article  Google Scholar 

  • Ueno Y, Kurano K, Miyachi S (1998) Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J Ferment Bioeng 86:38–43

    Google Scholar 

  • Valente LMP, Gouveia A, Rema P, Matos J, Gomes FF, Pinto IS (2006) Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 252(1):85–91

    Article  Google Scholar 

  • Van Den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (Bio-)chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30:1405–1424. https://doi.org/10.1016/j.biotechadv.2012.02.015

  • Venuleo M, Raven JA, Giordano M (2017) Intraspecific chemical communication in microalgae. New Phytol 215:516–530

    Article  Google Scholar 

  • Vidyashankar S, VenuGopal KS, Chauhan VS, Muthukumar SP, Sarada R (2015) Characterisation of defatted Scenedesmus dimorphus algal biomass as animal feed. J Appl Phycol 27(5):1871–1879

    Article  CAS  Google Scholar 

  • Wan C, Alam MA, Zhao XQ, Zhang XY, Guo SL, Ho SH, Chang JS, Bai FW (2015) Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour Technol 184:251–257. https://doi.org/10.1016/j.biortech.2014.11.081

    Article  CAS  Google Scholar 

  • Wang Y, Rischer H, Eriksen NT, Wiebe MG (2013) Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Bioresour Technol 144:608–614. https://doi.org/10.1016/j.biortech.2013.07.027

    Article  CAS  Google Scholar 

  • Wang Y, Yang Y, Ma F, Xuan L, Xu Y, Huo H, Zhou D, Dong S (2015) Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content. Lett Appl Microbiol 60(5):497–503. https://doi.org/10.1111/Lam.12403

    Article  CAS  Google Scholar 

  • Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88(6):1071

    Article  CAS  Google Scholar 

  • Wannathong T, Waterhouse JC, Young REB, Economou CK, Purton S (2016) New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 100(12):5467–5477

    Article  CAS  Google Scholar 

  • Wassef EA, El-Sayed AFM, Kandeel KM, Sakr EM (2005) Evaluation of Pterocla dia and Ulva meals as additives to gilthead seabream Sparus aurata diets. Egypt J Aquat Res 31:321–332

    Google Scholar 

  • Weeks DP (2011) Homologous recombination in Nannochloropsis: a powerful tool in an industrially relevant alga. Proc Natl Acad Sci USA 108(52):20859–20860

    Article  CAS  Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29(2):949–982

    Article  CAS  Google Scholar 

  • Weyman PD, Beeri K, Lefebvre SC, Rivera J, Mccarthy JK, Heuberger AL, Peers G, Allen AE, Dupont CL (2015) Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis. Plant Biotechnol J 13(4):460

    Article  CAS  Google Scholar 

  • Wirth R, Lakatos G, Bojti T, Maroti G, Bagi Z, Kis M, Kovacs A, Acs N, Rakhely G, Kovacs KL (2015) Metagenome changes in the mesophilic biogas-producing community during fermentation of the green alga Scenedesmus obliquus. J Biotechnol 215:52–61

    Article  CAS  Google Scholar 

  • Wu XJ, Gao G, Giordano M, Gao KS (2012) Growth and photosynthesis of a diatom grown under elevated CO2 in the presence of solar UV radiation. Fundam Appl Limnol 180(4):279–290

    Article  CAS  Google Scholar 

  • Yi YU, Wang H, Yang Y, Pei G, Qin Z, Jiujun JI (2016) Study on preparation of nutritional Nostoc sphaeroides jelly. Amino Acids Biot Resour 03:34–39

    Google Scholar 

  • Zhang YM, Chen H, He CL, Wang Q (2013) Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8(7):e69225. https://doi.org/10.1371/journal.pone.0069225

    Article  CAS  Google Scholar 

  • Zhang Y, Fan X, Yang Z, Wang H, Yang D, Guo R (2012) Characterization of H2 photoproduction by a new marine green alga, Platymonas helgolandica var. tsingtaoensis. Appl Energy 92:38–43

    Google Scholar 

  • Zhang X, Chen H, Chen W, Qiao Y, He C, Wang Q (2014a) Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases. Environ Sci Technol 48(17):10497–10504. https://doi.org/10.1021/es5013824

    Article  CAS  Google Scholar 

  • Zhang X, Rong J, Chen H, He C, Wang Q (2014b) Current status and outlook in the application of microalgae in biodiesel production and environmental protection. Energy Res. https://doi.org/10.3389/fenrg.2014.00032

  • Zhang X, Ma F, Zhu X, Zhu J, Rong J, Zhan J, Chen H, He C, Wang Q (2017) The acceptor side of photosystem II is the initial target of nitrite stress in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 83(3):e02952–e03016

    Google Scholar 

  • Zhao MX, Ruan WQ (2013) Biogas performance from co-digestion of Taihu algae and kitchen wastes. Energy Convers Manag 75:21–24

    Article  CAS  Google Scholar 

  • Zhong W, Zhang Z, Luo Y, Qiao M, Xiao W (2012) Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Bioresource 114:281–286

    Google Scholar 

  • Zhou W, Min M, Li Y, Bing H, Ma X, Cheng Y, Liu Y, Chen P, Ruan R (2012) A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour Technol 110(1):448

    Article  CAS  Google Scholar 

  • Zhu LD (2015) Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew Sust Energ Rev 41:1376–1384. https://doi.org/10.1016/j.rser.2014.09.040

    Article  Google Scholar 

  • Zhu S, Wang Y, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014) Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by nitrogen starvation. Appl Biochem Biotechnol 174(7):2435–2445

    Article  CAS  Google Scholar 

  • Zhu J, Chen W, Chen H, Zhang X, He C, Rong J, Wang Q (2016) Improved productivity of neutral lipids in Chlorella sp. A2 by minimal nitrogen supply. Front Microbiol 7(557). https://doi.org/10.3389/fmicb.2016.00557

  • Zittelli GC, Rodolfi L, Bassi N, Biondi N, Tredici MR (2013) Photobioreactors for microalgal biofuel production. In: Algae for biofuels and energy. Springer, Dordrecht

    Google Scholar 

Download references

Acknowledgments

MG applicative research has been funded by Fondi di Ricerca di Anteneo 2013–2017 and Fondi Strategici di Ateneo 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Giordano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giordano, M., Wang, Q. (2018). Microalgae for Industrial Purposes. In: Vaz Jr., S. (eds) Biomass and Green Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-66736-2_6

Download citation

Publish with us

Policies and ethics