Skip to main content

Trainable Regularization for Multi-frame Superresolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10496))

Abstract

In this paper, we present a novel method for multi-frame superresolution (SR). Our main goal is to improve the spatial resolution of a multi-line scan camera for an industrial inspection task. High resolution output images are reconstructed using our proposed SR algorithm for multi-channel data, which is based on the trainable reaction-diffusion model. As this is a supervised learning approach, we simulate ground truth data for a real imaging scenario. We show that learning a regularizer for the SR problem improves the reconstruction results compared to an iterative reconstruction algorithm using TV or TGV regularization. We test the learned regularizer, trained on simulated data, on images acquired with the real camera setup and achieve excellent results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Babacan, S.D., Molina, R., Katsaggelos, A.K.: Variational Bayesian super resolution. IEEE Trans. Image Process. 20(4), 984–999 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burns, P.D.: Slanted-Edge MTF for digital camera and scanner analysis. In: Proceedings of the PICS Conference, IS&T, pp. 135–138 (2000)

    Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, Y., Yu, W., Pock, T.: On learning optimized reaction diffusion processes for effective image restoration. In: Computer Vision and Pattern Recognition, pp. 5261–5269 (2015)

    Google Scholar 

  6. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13(10), 1327–1344 (2004)

    Article  Google Scholar 

  7. Kappeler, A., Yoo, S., Dai, Q., Katsaggelos, A.K.: Video super-resolution with convolutional neural networks. IEEE Trans. Comput. Imaging PP(99), 1 (2016)

    MathSciNet  Google Scholar 

  8. Klatzer, T., Hammernik, K., Knöbelreiter, P., Pock, T.: Learning joint demosaicing and denoising based on sequential energy minimization. In: IEEE International Conference on Computational Photography (2016)

    Google Scholar 

  9. Liao, R., Tao, X., Li, R., Ma, Z., Jia, J.: Video super-resolution via deep draft-ensemble learning. In: International Conference on Computer Vision (2015)

    Google Scholar 

  10. Lim, K.H., Kwoh, L.K.: Super-resolution for SPOT5-Beyond supermode. In: Asian Conference on Remote Sensing (2009)

    Google Scholar 

  11. Liu, C.S.: On Bayesian adaptive video super resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 346–360 (2014)

    Article  Google Scholar 

  12. Song, B.C., Jeong, S.C., Choi, Y.: Video super-resolution algorithm using bi-directional overlapped block motion compensation and on-the-fly dictionary training. IEEE Trans. Circuits Syst. Video Technol. 21(3), 274–285 (2011)

    Article  Google Scholar 

  13. Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T.: Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 21(8), 3467–3478 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Sig. Process. 128, 389–408 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge grant support from the FWF START project BIVISION, No. Y729, the ERC starting grant HOMOVIS, No. 640156 and from the AIT and the Austrian Federal Ministry of Science under the HRSM programme BGBl. II Nr. 292/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Klatzer .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 205 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Klatzer, T., Soukup, D., Kobler, E., Hammernik, K., Pock, T. (2017). Trainable Regularization for Multi-frame Superresolution. In: Roth, V., Vetter, T. (eds) Pattern Recognition. GCPR 2017. Lecture Notes in Computer Science(), vol 10496. Springer, Cham. https://doi.org/10.1007/978-3-319-66709-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66709-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66708-9

  • Online ISBN: 978-3-319-66709-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics