Skip to main content

An Efficient Octree Design for Local Variational Range Image Fusion

  • Conference paper
  • First Online:
Book cover Pattern Recognition (GCPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10496))

Included in the following conference series:

Abstract

We present a reconstruction pipeline for a large-scale 3D environment viewed by a single moving RGB-D camera. Our approach combines advantages of fast and direct, regularization-free depth fusion and accurate, but costly variational schemes. The scene’s depth geometry is extracted from each camera view and efficiently integrated into a large, dense grid as a truncated signed distance function, which is organized in an octree. To account for noisy real-world input data, variational range image integration is performed in local regions of the volume directly on this octree structure. We focus on algorithms which are easily parallelizable on GPUs, allowing the pipeline to be used in real-time scenarios where the user can interactively view the reconstruction and adapt camera motion as required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, J., Bautembach, D., Izadi, S.: Scalable real-time volumetric surface reconstruction. ACM Trans. Graph. (Proc. SIGGRAPH) 32(4), 113 (2013)

    MATH  Google Scholar 

  5. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  6. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 303–312. ACM (1996)

    Google Scholar 

  7. Graber, G., Pock, T., Bischof, H.: Online 3D reconstruction using convex optimization. In: Proceedings of the International Conference on Computer Vision Workshops (2011)

    Google Scholar 

  8. Kahler, O., Adrian Prisacariu, V., Yuheng Ren, C., Sun, X., Torr, P., Murray, D.: Very high frame rate volumetric integration of depth images on mobile devices. IEEE Trans. Vis. Comput. Graph. 21(11), 1241–1250 (2015)

    Article  Google Scholar 

  9. Katz, S., Tal, A.: On the visibility of point clouds. In: The IEEE International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  10. Kehl, W., Holl, T., Tombari, F., Ilic, S., Navab, N.: An octree-based approach towards efficient variational range data fusion (2016)

    Google Scholar 

  11. Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), pp. 225–234 (2007). http://ewokrampage.wordpress.com/

  12. Li, Y., Osher, S., et al.: A new median formula with applications to pde based denoising. Commun. Math. Sci. 7(3), 741–753 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. McShaffry, M., Graham, D.: Game Coding Complete, 4th edn. Delmar Learning, Clifton Park (2012)

    Google Scholar 

  14. NVIDIA CUDA Sparse Matrix library. https://developer.nvidia.com/cusparse

  15. Olshanskii, M., Terekhov, K., Vassilevski, Y.: An octree-based solver for the incompressible Navier-Stokes equations with enhanced stability and low dissipation. Comput. Fluids 84, 231–246 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pharr, M., Jakob, W., Humphreys, G.: Physically based rendering: From theory to implementation. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  17. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: Proceedings of the International Conference on Computer Vision (2011)

    Google Scholar 

  18. Roth, H., Vona, M.: Moving volume kinectfusion (2012)

    Google Scholar 

  19. Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. ACM Trans. Graph. (TOG) 21(3), 438–446 (2002)

    Article  Google Scholar 

  20. Schroers, C., Zimmer, H., Valgaerts, L., Bruhn, A., Demetz, O., Weickert, J.: Anisotropic range image integration. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 73–82. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32717-9_8

    Chapter  Google Scholar 

  21. Slavcheva, M., Kehl, W., Navab, N., Ilic, S.: SDF-2-SDF: highly accurate 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 680–696. Springer, Cham (2016). doi:10.1007/978-3-319-46448-0_41

    Chapter  Google Scholar 

  22. Steinbruecker, F., Kerl, C., Sturm, J., Cremers, D.: Large-scale multi-resolution surface reconstruction from RGB-D sequences. In: Proceedings of the International Conference on Computer Vision, Sydney, Australia (2013)

    Google Scholar 

  23. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS), October 2012

    Google Scholar 

  24. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 311–318. ACM (1994)

    Google Scholar 

  25. Whelan, T., Johannsson, H., Kaess, M., Leonard, J.J., McDonald, J.: Robust tracking for real-time dense RGB-D mapping with kintinuous (2012)

    Google Scholar 

  26. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L1 range image integration. In: Proceedings of the International Conference on Computer Vision (2007)

    Google Scholar 

  27. Zach, C.: Fast and high quality fusion of depth maps. In: Proceedings of the International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT) (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the ERC Starting Grant “Light Field Imaging and Analysis” (LIA 336978, FP7-2014) and the SFB Transregio 161 “Quantitative Methods for Visual Computing”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Marniok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Marniok, N., Johannsen, O., Goldluecke, B. (2017). An Efficient Octree Design for Local Variational Range Image Fusion. In: Roth, V., Vetter, T. (eds) Pattern Recognition. GCPR 2017. Lecture Notes in Computer Science(), vol 10496. Springer, Cham. https://doi.org/10.1007/978-3-319-66709-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66709-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66708-9

  • Online ISBN: 978-3-319-66709-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics