Skip to main content

Gradient Flows on a Riemannian Submanifold for Discrete Tomography

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10496))

Included in the following conference series:

  • 2222 Accesses

Abstract

We present a smooth geometric approach to discrete tomography that jointly performs tomographic reconstruction and label assignment. The flow evolves on a submanifold equipped with a Hessian Riemannian metric and properly takes into account given projection constraints. The metric naturally extends the Fisher-Rao metric from labeling problems with directly observed data to the inverse problem of discrete tomography where projection data only is available. The flow simultaneously performs reconstruction and label assignment. We show that it can be numerically integrated by an implicit scheme based on a Bregman proximal point iteration. A numerical evaluation on standard test-datasets in the few angles scenario demonstrates an improvement of the reconstruction quality compared to competitive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarle, W., Palenstijn, W., Beenhouwer, J., Altantzis, T., Bals, S., Batenburg, K., Sijbers, J.: The ASTRA toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy 157, 35–47 (2015)

    Article  Google Scholar 

  2. Alvarez, F., Bolte, J., Brahic, O.: Hessian Riemannian gradient flows in convex programming. SIAM J. Control Optim. 43(2), 477–501 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by assignment. J. Math. Imaging Vis. 1–28 (2017). http://dx.doi.org/10.1007/s10851-016-0702-4

  4. Batenburg, K., Sijbers, J.: DART: a practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process. 20(9), 2542–2553 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burbea, J., Rao, C.R.: Entropy differential metric, distance and divergence measures in probability spaces: a unified approach. J. Multivar. Anal. 12(4), 575–596 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program. 159(1), 253–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Denitiu, A., Petra, S., Schnörr, C., Schnörr, C.: Phase transitions and cosparse tomographic recovery of compound solid bodies from few projections. Fundamenta Informaticae 135, 73–102 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Goris, B., Broek, W., Batenburg, K., Mezerji, H., Bals, S.: Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113, 120–130 (2012)

    Article  Google Scholar 

  9. Herman, G., Kuba, A.: Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  10. Kappes, J.H., Petra, S., Schnörr, C., Zisler, M.: TomoGC: binary tomography by constrained GraphCuts. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 262–273. Springer, Cham (2015). doi:10.1007/978-3-319-24947-6_21

    Chapter  Google Scholar 

  11. Minka, T.: Divergence measures and message passing. Technical report, MSR-TR-2005-173, Microsoft Research Ltd., Cambridge, UK (2005)

    Google Scholar 

  12. Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex-concave regularization and D.C. programming. Discret. Appl. Math. 151(13), 229–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shepp, L., Logan, B.: The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21(3), 21–43 (1974)

    Article  Google Scholar 

  14. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777 (2008)

    Article  Google Scholar 

  15. Storath, M., Weinmann, A., Frikel, J., Unser, M.: Joint image reconstruction and segmentation using the Potts model. Inverse Prob. 31(2), 025003 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Varga, L., Balázs, P., Nagy, A.: An energy minimization reconstruction algorithm for multivalued discrete tomography. In: 3rd International Symposium on Computational Modeling of Objects Represented in Images, Rome, Italy, Proceedings, pp. 179–185. Taylor & Francis (2012)

    Google Scholar 

  17. Weber, S., Nagy, A., Schüle, T., Schnörr, C., Kuba, A.: A benchmark evaluation of large-scale optimization approaches to binary tomography. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 146–156. Springer, Heidelberg (2006). doi:10.1007/11907350_13

    Chapter  Google Scholar 

  18. Weber, S., Schnörr, C., Hornegger, J.: A linear programming relaxation for binary tomography with smoothness priors. Electron. Notes Discret. Math. 12, 243–254 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zisler, M., Åström, F., Petra, S., Schnörr, C.: Image reconstruction by multilabel propagation. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 247–259. Springer, Cham (2017). doi:10.1007/978-3-319-58771-4_20

    Chapter  Google Scholar 

  20. Zisler, M., Petra, S., Schnörr, C., Schnörr, C.: Discrete tomography by continuous multilabeling subject to projection constraints. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 261–272. Springer, Cham (2016). doi:10.1007/978-3-319-45886-1_21

    Chapter  Google Scholar 

  21. Zisler, M., Kappes, J.H., Schnörr, C., Petra, S., Schnörr, C.: Non-binary discrete tomography by continuous non-convex optimization. IEEE Trans. Comput. Imaging 2(3), 335–347 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Zisler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zisler, M., Savarino, F., Petra, S., Schnörr, C. (2017). Gradient Flows on a Riemannian Submanifold for Discrete Tomography. In: Roth, V., Vetter, T. (eds) Pattern Recognition. GCPR 2017. Lecture Notes in Computer Science(), vol 10496. Springer, Cham. https://doi.org/10.1007/978-3-319-66709-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66709-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66708-9

  • Online ISBN: 978-3-319-66709-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics