Skip to main content

Adaptive Regularization in Convex Composite Optimization for Variational Imaging Problems

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10496))

Included in the following conference series:

Abstract

We propose an adaptive regularization scheme in a variational framework where a convex composite energy functional is optimized. We consider a number of imaging problems including segmentation and motion estimation, which are considered as optimal solutions of the energy functionals that mainly consist of data fidelity, regularization and a control parameter for their trade-off. We presents an algorithm to determine the relative weight between data fidelity and regularization based on the residual that measures how well the observation fits the model. Our adaptive regularization scheme is designed to locally control the regularization at each pixel based on the assumption that the diversity of the residual of a given imaging model spatially varies. The energy optimization is presented in the alternating direction method of multipliers (ADMM) framework where the adaptive regularization is iteratively applied along with mathematical analysis of the proposed algorithm. We demonstrate the robustness and effectiveness of our adaptive regularization through experimental results presenting that the qualitative and quantitative evaluation results of each imaging task are superior to the results with a constant regularization scheme. The desired properties, robustness and effectiveness, of the regularization parameter selection in a variational framework for imaging problems are achieved by merely replacing the static regularization parameter with our adaptive one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ground truth boundary is not uniquely provided in the Berkeley dataset and we have chosen the one suited for our bi-partitioning segmentation model.

References

  1. Ayvaci, A., Raptis, M., Soatto, S.: Occlusion detection and motion estimation with convex optimization. In: Advances in Neural Information Processing Systems, pp. 100–108 (2010)

    Google Scholar 

  2. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  3. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becker, S., Bobin, J., Candès, E.J.: Nesta: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

    Article  MATH  Google Scholar 

  7. Bresson, X., Esedo\(\bar{\rm g}\)lu, S., Vandergheynst, P., Thiran, J.P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28(2), 151–167 (2007)

    Google Scholar 

  8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  9. Chambolle, A., Cremers, D., Pock, T.: A convex approach to minimal partitions. SIAM J. Imaging Sci. 5(4), 1113–1158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  13. Chantas, G., Gkamas, T., Nikou, C.: Variational-Bayes optical flow. J. Math. Imaging Vis. 50(3), 199–213 (2014)

    Article  MATH  Google Scholar 

  14. Galatsanos, N.P., Katsaggelos, A.K.: Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans. Image Process. 1(3), 322–336 (1992)

    Article  Google Scholar 

  15. Hintermüller, M., Wu, T.: Nonconvex tv \(\hat{}\)q-models in image restoration: analysis and a trust-region regularization-based superlinearly convergent solver. SIAM J. Imaging Sci. 6(3), 1385–1415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Horn, B.K., Schunck, B.G.: Determining optical flow. In: 1981 Technical Symposium East, pp. 319–331. International Society for Optics and Photonics (1981)

    Google Scholar 

  17. Krähenbühl, P., Koltun, V.: Efficient nonlocal regularization for optical flow. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 356–369. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33718-5_26

    Chapter  Google Scholar 

  18. Krajsek, K., Mester, R.: A maximum likelihood estimator for choosing the regularization parameters in global optical flow methods. In: 2006 IEEE International Conference on Image Processing, pp. 1081–1084. IEEE (2006)

    Google Scholar 

  19. Lee, K.J., Kwon, D., Yun, D., Lee, S.U., et al.: Optical flow estimation with adaptive convolution kernel prior on discrete framework. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2504–2511. IEEE (2010)

    Google Scholar 

  20. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423, July 2001

    Google Scholar 

  21. Möllenhoff, T., Strekalovskiy, E., Moeller, M., Cremers, D.: The primal-dual hybrid gradient method for semiconvex splittings. SIAM J. Imaging Sci. 8(2), 827–857 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nesterov, Y., Nemirovskii, A., Ye, Y.: Interior-Point Polynomial Algorithms in Convex Programming, vol. 13. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  23. Ng, L., Solo, V.: A data-driven method for choosing smoothing parameters in optical flow problems. In: Proceedings of the International Conference on Image Processing, 1997, vol. 3, pp. 360–363. IEEE (1997)

    Google Scholar 

  24. Nguyen, N., Milanfar, P., Golub, G.: Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Trans. Image Process. 10(9), 1299–1308 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nikolova, M., Ng, M.K., Tam, C.P.: Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Trans. Image Process. 19(12), 3073–3088 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: An iterated L1 algorithm for non-smooth non-convex optimization in computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1759–1766 (2013)

    Google Scholar 

  27. Otte, M., Nagel, H.-H.: Optical flow estimation: advances and comparisons. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 49–60. Springer, Heidelberg (1994). doi:10.1007/3-540-57956-7_5

    Chapter  Google Scholar 

  28. Peng, B., Veksler, O.: Parameter selection for graph cut based image segmentation. In: BMVC, vol. 32, pp. 42–44 (2008)

    Google Scholar 

  29. Pérez, J.S., Meinhardt-Llopis, E., Facciolo, G.: TV-L1 optical flow estimation. Image Process. On Line 2013, 137–150 (2013)

    Article  Google Scholar 

  30. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1762–1769. IEEE (2011)

    Google Scholar 

  31. Ranftl, R., Bredies, K., Pock, T.: Non-local total generalized variation for optical flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 439–454. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_29

    Google Scholar 

  32. Thompson, A.M., Brown, J.C., Kay, J.W., Titterington, D.M.: A study of methods of choosing the smoothing parameter in image restoration by regularization. IEEE Trans. Pattern Anal. Mach. Intell. 4, 326–339 (1991)

    Article  Google Scholar 

  33. Unger, M., Werlberger, M., Pock, T., Bischof, H.: Joint motion estimation and segmentation of complex scenes with label costs and occlusion modeling. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1878–1885. IEEE (2012)

    Google Scholar 

  34. Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure-and motion-adaptive regularization for high accuracy optic flow. In: ICCV, pp. 1663–1668 (2009)

    Google Scholar 

  35. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for TV-\(L^1\) optical flow. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 23–45. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03061-1_2

    Chapter  Google Scholar 

  36. Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2464–2471. IEEE (2010)

    Google Scholar 

  37. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-l1 optical flow. In: BMVC. vol. 1, p. 3 (2009)

    Google Scholar 

Download references

Acknowledgement

This work was supported by NRF-2014R1A2A1A11051941 and NRF-2017R1A2B4006023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Woo Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hong, BW., Koo, JK., Dirks, H., Burger, M. (2017). Adaptive Regularization in Convex Composite Optimization for Variational Imaging Problems. In: Roth, V., Vetter, T. (eds) Pattern Recognition. GCPR 2017. Lecture Notes in Computer Science(), vol 10496. Springer, Cham. https://doi.org/10.1007/978-3-319-66709-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66709-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66708-9

  • Online ISBN: 978-3-319-66709-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics