Skip to main content

Convolutional Neural Networks for Movement Prediction in Videos

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10496))

Included in the following conference series:

  • 2327 Accesses

Abstract

In this work we present a convolutional neural network-based (CNN) model that predicts future movements of a ball given a series of images depicting the ball and its environment. For training and evaluation, we use artificially generated images sequences. Two scenarios are analyzed: Prediction in a simple table tennis environment and a more challenging squash environment. Classical 2D convolution layers are compared with 3D convolution layers that extract the motion information of the ball from contiguous frames. Moreover, we investigate whether networks with stereo visual input perform better than those with monocular vision only. Our experiments suggest that CNNs can indeed predict physical behaviour with small error rates on unseen data but the performance drops for very complex underlying movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.blender.org.

References

  1. Bhat, K.S., Seitz, S.M., Popović, J., Khosla, P.K.: Computing the physical parameters of rigid-body motion from video. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 551–565. Springer, Heidelberg (2002). doi:10.1007/3-540-47969-4_37

    Chapter  Google Scholar 

  2. Fragkiadaki, K., Agrawal, P., Levine, S., Malik, J.: Learning visual predictive models of physics for playing billiards. CoRR abs/1511.07404 (2015)

    Google Scholar 

  3. Hamrick, J.B., Battaglia, P., Tenenbaum, J.B.: Probabilistic internal physics models guide judgments about object dynamics. In: Proceedings of the 33th Annual Meeting of the Cognitive Science Society, CogSci 2011, July 20–23, Boston (2011)

    Google Scholar 

  4. Hinton, G.: Neural networks for machine learning, lecture notes. http://www.cs.toronto.edu/~tijmen/csc321

  5. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013)

    Article  Google Scholar 

  6. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, pp. 1725–1732. IEEE Computer Society, Washington (2014)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  8. Lerer, A., Gross, S., Fergus, R.: Learning physical intuition of block towers by example. In: Proceedings of the 33rd International Conference on Machine Learning, ICML 2016, pp. 430–438, New York City, 19–24 June 2016

    Google Scholar 

  9. Michalski, V., Memisevic, R., Konda, K.: Modeling deep temporal dependencies with recurrent grammar cells. In: Advances in Neural Information Processing Systems, vol. 27, pp. 1925–1933. Curran Associates Inc. (2014)

    Google Scholar 

  10. Mottaghi, R., Bagherinezhad, H., Rastegari, M., Farhadi, A.: Newtonian image understanding: unfolding the dynamics of objects in static images. CoRR abs/1511.04048 (2015)

    Google Scholar 

  11. Kyriazis, N., Oikonomidis, I., Argyros, A.: Binding computer vision to physics based simulation: the case study of a bouncing ball. In: Proceedings of the British Machine Vision Conference, p. 43.1–43.11. BMVA Press (2011)

    Google Scholar 

  12. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4489–4497. IEEE (2015)

    Google Scholar 

  13. Walker, J., Doersch, C., Gupta, A., Hebert, M.: An uncertain future: forecasting from static images using variational autoencoders. CoRR abs/1606.07873 (2016)

    Google Scholar 

  14. Wu, J., Yildirim, I., Lim, J.J., Freeman, B., Tenenbaum, J.: Galileo: perceiving physical object properties by integrating a physics engine with deep learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds) Advances in Neural Information Processing Systems, vol. 28, pp. 127–135. Curran Associates Inc. (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Warnecke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Warnecke, A., Lüddecke, T., Wörgötter, F. (2017). Convolutional Neural Networks for Movement Prediction in Videos. In: Roth, V., Vetter, T. (eds) Pattern Recognition. GCPR 2017. Lecture Notes in Computer Science(), vol 10496. Springer, Cham. https://doi.org/10.1007/978-3-319-66709-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66709-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66708-9

  • Online ISBN: 978-3-319-66709-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics