Skip to main content

Reconciling Selfish Routing with Social Good

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10504))

Abstract

Selfish routing is a central problem in algorithmic game theory, with one of the principal applications being that of routing in road networks. Inspired by the emergence of routing technologies and autonomous driving, we revisit selfish routing and consider three possible outcomes of it: (i) \(\theta \)-Positive Nash Equilibrium flow, where every path that has non-zero flow on all of its edges has cost no greater than \(\theta \) times the cost of any other path, (ii) \(\theta \)-Used Nash Equilibrium flow, where every used path that appears in the path flow decomposition has cost no greater than \(\theta \) times the cost of any other path, and (iii) \(\theta \)-Envy Free flow, where every path that appears in the path flow decomposition has cost no greater than \(\theta \) times the cost of any other path in the path flow decomposition. We first examine the relations of these outcomes among each other and then measure their possible impact on the network’s performance. Right after, we examine the computational complexity of finding such flows of minimum social cost and give a range for \(\theta \) for which this task is easy and a range of \(\theta \) for which this task is NP-hard for the concepts of \(\theta \)-Used Nash Equilibrium flow and \(\theta \)-Envy Free flow. Finally, we propose strategies which, in a worst-case approach, can be used by a central planner in order to provide good \(\theta \)-flows.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    The concept of fairness in selfish routing has been considered in the past, with the two main approaches defining fairness as: (1) the ratio of the maximum path delay in a given flow to the average delay under Nash equilibrium [20] and (2) the ratio of the maximum path delay to the minimum path delay in a given flow [11].

  2. 2.

    In the literature, PNE is typically used for abbreviating Pure Nash Equilibrium, but we always use it to denote Positive Nash Equilibrium, as defined here.

References

  1. Basu, S., Yang, G., Lianeas, T., Nikolova, E., Chen, Y.: Reconciling selfish routing with social good. arXiv:1707.00208 (2017)

  2. Beckmann, M., McGuire, C., Winsten, C.B.: Studies in the economics of transportation. Technical report (1956)

    Google Scholar 

  3. Bertsimas, D., Farias, V.F., Trichakis, N.: The price of fairness. Oper. Res. 59(1), 17–31 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bertsimas, D., Farias, V.F., Trichakis, N.: On the efficiency-fairness trade-off. Manag. Sci. 58(12), 2234–2250 (2012)

    Article  Google Scholar 

  5. Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Computing approximate pure nash equilibria in congestion games. ACM SIGecom Exch. 11(1), 26–29 (2012)

    Article  Google Scholar 

  6. Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Approximate pure nash equilibria in weighted congestion games: existence, efficient computation, and structure. ACM Trans. Econ. Comput. 3(1), 2 (2015)

    Article  MathSciNet  Google Scholar 

  7. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for selfish and greedy load balancing. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 311–322. Springer, Heidelberg (2006). doi:10.1007/11786986_28

    Chapter  MATH  Google Scholar 

  8. Chien, S., Sinclair, A.: Convergence to approximate nash equilibria in congestion games. In: SODA (2007)

    Google Scholar 

  9. Christodoulou, G., Koutsoupias, E., Spirakis, P.G.: On the performance of approximate equilibria in congestion games. Algorithmica 61(1), 116–140 (2011)

    Article  MathSciNet  Google Scholar 

  10. Correa, J.R., Schulz, A.S., Stier Moses, N.E.: Computational complexity, fairness, and the price of anarchy of the maximum latency problem. In: Bienstock, D., Nemhauser, G. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 59–73. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25960-2_5

    Chapter  MATH  Google Scholar 

  11. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Fast, fair, and efficient flows in networks. Oper. Res. 55(2), 215–225 (2007)

    Article  MathSciNet  Google Scholar 

  12. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: A geometric approach to the price of anarchy in nonatomic congestion games. Games Econ. Behav. 64(2), 457–469 (2008)

    Article  MathSciNet  Google Scholar 

  13. Feldmann, A.E., Röglin, H., Vöcking, B.: Computing approximate nash equilibria in network congestion games. In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 209–220. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69355-0_18

    Chapter  Google Scholar 

  14. Fischer, S., Vöcking, B.: On the evolution of selfish routing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 323–334. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30140-0_30

    Chapter  Google Scholar 

  15. Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multicommodity networks and generalized congestion games. In: FOCS (2004)

    Google Scholar 

  16. Harks, T.: On the price of anarchy of network games with nonatomic and atomic players. Technical report, available at Optimization Online (2007)

    Google Scholar 

  17. Jahn, O., Möhring, R.H., Schulz, A.S., Stier-Moses, N.E.: System-optimal routing of traffic flows with user constraints in networks with congestion. Oper. Res. 53(4), 600–616 (2005)

    Article  MathSciNet  Google Scholar 

  18. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). doi:10.1007/3-540-49116-3_38

    Chapter  Google Scholar 

  19. Roughgarden, T.: Stackelberg scheduling strategies. In: STOC (2001)

    Google Scholar 

  20. Roughgarden, T.: How unfair is optimal routing? In: SODA (2002)

    Google Scholar 

  21. Roughgarden, T.: Intrinsic robustness of the price of anarchy. J. ACM (JACM) 62(5), 32 (2015)

    Article  MathSciNet  Google Scholar 

  22. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM (JACM) 49(2), 236–259 (2002)

    Article  MathSciNet  Google Scholar 

  23. Schulz, A.S., Stier-Moses, N.E.: Efficiency and fairness of system-optimal routing with user constraints. Networks 48(4), 223–234 (2006)

    Article  MathSciNet  Google Scholar 

  24. Wardrop, J.G.: Some Theoretical Aspects of Road Traffic Research (1952)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF grant numbers CCF-1216103, CCF-1350823 and CCF-1331863. Part of the research was performed while a subset of the authors were at the Simons Institute in Berkeley, CA in Fall 2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumya Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Basu, S., Yang, G., Lianeas, T., Nikolova, E., Chen, Y. (2017). Reconciling Selfish Routing with Social Good. In: Bilò, V., Flammini, M. (eds) Algorithmic Game Theory. SAGT 2017. Lecture Notes in Computer Science(), vol 10504. Springer, Cham. https://doi.org/10.1007/978-3-319-66700-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66700-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66699-0

  • Online ISBN: 978-3-319-66700-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics