Skip to main content

Conditional Value-at-Risk: Structure and Complexity of Equilibria

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10504))

Included in the following conference series:

Abstract

Conditional Value-at-Risk, denoted as \({\mathsf {CVaR}}_{\alpha }\), is becoming the prevailing measure of risk over two paramount economic domains: the insurance domain and the financial domain; \(\alpha \in (0,1)\) is the confidence level. In this work, we study the strategic equilibria for an economic system modeled as a game, where risk-averse players seek to minimize the Conditional Value-at-Risk of their costs. Concretely, in a \({\mathsf {CVaR}}_{\alpha }\)-equilibrium, the mixed strategy of each player is a best-response. We establish two significant properties of \({\mathsf {CVaR}}_{\alpha }\) at equilibrium: (1) The Optimal-Value property: For any best-response of a player, each mixed strategy in the support gives the same cost to the player. This follows directly from the concavity of \({\mathsf {CVaR}}_{\alpha }\) in the involved probabilities, which we establish. (2) The Crawford property: For every \(\alpha \), there is a 2-player game with no \({\mathsf {CVaR}}_{\alpha }\)-equilibrium. The property is established using the Optimal-Value property and a new functional property of \({\mathsf {CVaR}}_{\alpha }\), called Weak-Equilibrium-for-\({\mathsf {VaR}}_{\alpha }\), we establish. On top of these properties, we show, as one of our two main results, that deciding the existence of a \({\mathsf {CVaR}}_{\alpha }\)-equilibrium is strongly \({\mathcal {NP}}\)-hard even for 2-player games. As our other main result, we show the strong \({\mathcal {NP}}\)-hardness of deciding the existence of a \({\mathsf {V}}\)-equilibrium, over 2-player games, for any valuation \({\mathsf {V}}\) with the Optimal-Value and the Crawford properties. This result has a rich potential since we prove that the very significant and broad class of strictly quasiconcave valuations has the Optimal-Value property.

Partially supported by the German Research Foundation (DFG) within the Collaborative Research Centre “On-the-Fly-Computing” (SFB 901), and by funds for the promotion of research at University of Cyprus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Benati, S.: The computation of the worst conditional expectation. Eur. J. Oper. Res. 155, 414–425 (2004)

    Article  MathSciNet  Google Scholar 

  2. Benati, S., Rizzi, R.: A mixed integer linear programming formulation of the optimal mean/value-at-risk portfolio problem. Eur. J. Oper. Res. 176, 423–434 (2007)

    Article  MathSciNet  Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  4. Conitzer, V., Sandholm, T.: New complexity results about Nash equilibria. Games Econ. Behav. 63(2), 621–641 (2008)

    Article  MathSciNet  Google Scholar 

  5. Crawford, V.P.: Equilibrium without independence. J. Econ. Theory 50(1), 127–154 (1990)

    Article  MathSciNet  Google Scholar 

  6. Debreu, G.: A social equilibrium existence theorem. Proc. Nat. Acad. Sci. U.S.A. 38, 886–893 (1952)

    Article  MathSciNet  Google Scholar 

  7. DeFinetti, B.: Sulle stratificazioni convesse. Annal. Mat. 30, 173–183 (1949)

    Article  MathSciNet  Google Scholar 

  8. Fan, K.: Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. 38, 121–126 (1952)

    Article  MathSciNet  Google Scholar 

  9. Fenchel, W.: Convex Cones, Sets and Functions. Lecture Notes, Department of Mathematics, Princeton University (1953)

    Google Scholar 

  10. Fiat, A., Papadimitriou, C.H.: When the players are not expectation maximizers. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 1–14. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16170-4_1

    Chapter  Google Scholar 

  11. Guerraggio, A., Molho, E.: The origins of quasi-concavity: a development between mathematics and economics. Hist. Math. 31, 62–75 (2004)

    Article  MathSciNet  Google Scholar 

  12. Krokhmal, P., Zabarankin, M., Uryasev, S.: Modeling and optimization of risk. Surv. Oper. Res. Manag. Sci. 16, 49–66 (2011)

    Google Scholar 

  13. Markowitz, H.: Portfolio selection. J. Finan. 7, 77–91 (1952)

    Google Scholar 

  14. Mavronicolas, M., Monien, B.: Minimizing expectation plus variance. Theory Comput. Syst. 57, 617–654 (2015)

    Article  MathSciNet  Google Scholar 

  15. Mavronicolas, M., Monien, B.: The complexity of equilibria for risk-modeling valuations. Theor. Comput. Sci. 634, 67–96 (2016)

    Article  MathSciNet  Google Scholar 

  16. Nash, J.F.: Equilibrium points in \(n\)-person games. Proc. Nat. Acad. Sci. U.S.A. 36, 48–49 (1950)

    Article  MathSciNet  Google Scholar 

  17. Nash, J.F.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  18. von Neumann, J.: Zur theorie der gesellschaftsspiele. Math. Ann. 100, 295–320 (1928)

    Article  MathSciNet  Google Scholar 

  19. Ponstein, J.: Seven kinds of convexity. SIAM Rev. 9, 115–119 (1967)

    Article  MathSciNet  Google Scholar 

  20. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)

    Article  Google Scholar 

  21. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Finan. 26, 1443–1471 (2002)

    Article  Google Scholar 

  22. Rubinstein, A.: Lecture Notes in Microeconomic Theory. Princeton University Press, Princeton (2006)

    Google Scholar 

  23. Sarykalin, S., Serraino, G., Uryasev, S.: Value-at-risk vs. conditional value-at-risk in risk management and optimization. In: Tutorials in Operations Research, Chap. 13 (2008)

    Google Scholar 

  24. Sharpe, W.F.: A simplified model for portfolio analysis. Manag. Sci. 9, 277–293 (1963)

    Article  Google Scholar 

  25. Sharpe, W.F.: Mutual fund performance. J. Bus. 39, 119–138 (1966)

    Article  Google Scholar 

  26. Steinbach, M.C.: Markowitz revisited: mean-variance models in financial portfolios. SIAM Rev. 43, 31–85 (2001)

    Article  MathSciNet  Google Scholar 

  27. Stoyanov, S.V., Rachev, S.T., Fabozzi, F.: Optimal financial portfolios. Appl. Math. Fin. 14, 401–436 (2007)

    Article  MathSciNet  Google Scholar 

  28. Uryasev, S.: Conditional value-at-risk: optimization algorithms and applications. In: Financial Engineering News, no. 14, February 2000

    Google Scholar 

  29. Uryasev, S.: Optimization Using CV@R – Algorithms and Applications. Lecture Notes, Notes 7, Stochastic Optimization ESI 6912, University of Florida

    Google Scholar 

  30. Yang, X., Tao, S., Liu, R., Cai, M.: Complexity of scenario-based portfolio optimization problem with VaR objective. Int. J. Found. Comput. Sci. 13, 671–679 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Mavronicolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mavronicolas, M., Monien, B. (2017). Conditional Value-at-Risk: Structure and Complexity of Equilibria. In: Bilò, V., Flammini, M. (eds) Algorithmic Game Theory. SAGT 2017. Lecture Notes in Computer Science(), vol 10504. Springer, Cham. https://doi.org/10.1007/978-3-319-66700-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66700-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66699-0

  • Online ISBN: 978-3-319-66700-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics