Skip to main content

The Real Computational Complexity of Minmax Value and Equilibrium Refinements in Multi-player Games

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10504))

Included in the following conference series:

Abstract

We show that for several solution concepts for finite n-player games, where \(n \ge 3\), the task of simply verifying its conditions is computationally equivalent to the decision problem of the existential theory of the reals. This holds for trembling hand perfect equilibrium, proper equilibrium, and CURB sets in strategic form games and for (the strategy part of) sequential equilibrium, trembling hand perfect equilibrium, and quasi-perfect equilibrium in extensive form games. For obtaining these results we first show that the decision problem for the minmax value in n-player games, where \(n\ge 3\), is also equivalent to the decision problem for the existential theory of the reals.

Our results thus improve previous results of \(\mathrm {NP}\)-hardness as well as \(\textsc {Sqrt-Sum}\)-hardness of the decision problems to completeness for \(\exists \mathbb {R}\), the complexity class corresponding to the decision problem of the existential theory of the reals. As a byproduct we also obtain a simpler proof of a result by Schaefer and Štefankovič giving \(\exists \mathbb {R}\)-completeness for the problem of deciding existence of a probability constrained Nash equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    This crucial point of the reduction by Hansen et al. was unfortunately omitted in the paper [22].

References

  1. Basu, K., Weibull, J.W.: Strategy subsets closed under rational behavior. Econ. Lett. 36(2), 141–146 (1991)

    Article  MathSciNet  Google Scholar 

  2. Benisch, M., Davis, G.B., Sandholm, T.: Algorithms for rationalizability and CURB sets. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence, pp. 598–604. AAAI Press (2006)

    Google Scholar 

  3. Bilò, V., Mavronicolas, M.: A catalog of \(\exists \mathbb{R}\)-complete decision problems about Nash equilibria in multi-player games. In: Ollinger, N., Vollmer, H. (eds.) STACS 2016. LIPIcs, vol. 47, p. 17:1–17:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

    Google Scholar 

  4. Blömer, J.: Computing sums of radicals in polynomial time. In: 32nd Annual Symposium on Foundations of Computer Science (FOCS 1991), pp. 670–677. IEEE Computer Society Press (1991)

    Google Scholar 

  5. Borgs, C., Chayes, J., Immorlica, N., Kalai, A.T., Mirrokni, V., Papadimitriou, C.: The myth of the folk theorem. Games Econ. Behav. 70(1), 34–43 (2010)

    Article  MathSciNet  Google Scholar 

  6. Bubelis, V.: On equilibria in finite games. Int. J. Game Theor. 8(2), 65–79 (1979)

    Article  MathSciNet  Google Scholar 

  7. Bürgisser, P., Cucker, F.: Exotic quantifiers, complexity classes, and complete problems. Found. Comput. Math. 9(2), 135–170 (2009)

    Article  MathSciNet  Google Scholar 

  8. Buss, J.F., Frandsen, G.S., Shallit, J.O.: The computational complexity of some problems of linear algebra. J. Comput. Syst. Sci. 58(3), 572–596 (1999)

    Article  MathSciNet  Google Scholar 

  9. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 460–467. ACM (1988)

    Google Scholar 

  10. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), pp. 261–272. IEEE Computer Society Press (2006)

    Google Scholar 

  11. Conitzer, V., Sandholm, T.: New complexity results about Nash equilibria. Games Econ. Behav. 63(2), 621–641 (2008)

    Article  MathSciNet  Google Scholar 

  12. van Damme, E.: A relation between perfect equilibria in extensive form games and proper equilibria in normal form games. Int. J. Game Theor. 13, 1–13 (1984)

    Article  MathSciNet  Google Scholar 

  13. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

    Article  MathSciNet  Google Scholar 

  14. Datta, R.S.: Universality of Nash equilibria. Math. Oper. Res. 28(3), 424–432 (2003)

    Article  MathSciNet  Google Scholar 

  15. Etessami, K., Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: The complexity of approximating a trembling hand perfect equilibrium of a multi-player game in strategic form. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 231–243. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44803-8_20

    Chapter  MATH  Google Scholar 

  16. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed points. SIAM J. Comput. 39(6), 2531–2597 (2010)

    Article  MathSciNet  Google Scholar 

  17. Garg, J., Mehta, R., Vazirani, V.V., Yazdanbod, S.: ETR-completeness for decision versions of multi-player (symmetric) Nash equilibria. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 554–566. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47672-7_45

    Chapter  Google Scholar 

  18. Gatti, N., Panozzo, F.: New results on the verification of Nash refinements for extensive-form games. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), pp. 813–820. International Foundation for Autonomous Agents and Multiagent Systems (2012)

    Google Scholar 

  19. Gilboa, I., Zemel, E.: Nash and correlated equilibria: some complexity considerations. Games Econ. Behav. 1(1), 80–93 (1989)

    Article  MathSciNet  Google Scholar 

  20. Grigor’Ev, D.Y., Vorobjov, N.: Solving systems of polynomial inequalities in subexponential time. J. Symb. Comput. 5(1–2), 37–64 (1988)

    Article  MathSciNet  Google Scholar 

  21. Hansen, K.A., Hansen, T.D., Miltersen, P.B., Sørensen, T.B.: Approximability and parameterized complexity of minmax values. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 684–695. Springer, Heidelberg (2008). doi:10.1007/978-3-540-92185-1_74

    Chapter  Google Scholar 

  22. Hansen, K.A., Miltersen, P.B., Sørensen, T.B.: The computational complexity of trembling hand perfection and other equilibrium refinements. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 198–209. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16170-4_18

    Chapter  Google Scholar 

  23. Kreps, D.M., Wilson, R.: Sequential equilibria. Econometrica 50(4), 863–894 (1982)

    Article  MathSciNet  Google Scholar 

  24. Myerson, R.B.: Refinements of the Nash equilibrium concept. Int. J. Game Theor. 15, 133–154 (1978)

    Article  MathSciNet  Google Scholar 

  25. Nash, J.: Non-cooperative games. Ann. Math. 2(54), 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  26. Schaefer, M.: Complexity of some geometric and topological problems. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 334–344. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11805-0_32

    Chapter  Google Scholar 

  27. Schaefer, M.: Realizability of graphs and linkages. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 461–482. Springer, Heidelberg (2013). doi:10.1007/978-1-4614-0110-0_24

    Chapter  Google Scholar 

  28. Schaefer, M., Štefankovič, D.: Fixed points, Nash equilibria, and the existential theory of the reals. Theor. Comput. Syst. 60(2), 172–193 (2017)

    Article  MathSciNet  Google Scholar 

  29. Selten, R.: A reexamination of the perfectness concept for equilibrium points in extensive games. Int. J. Game Theor. 4, 25–55 (1975)

    Article  MathSciNet  Google Scholar 

  30. Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry And Discrete Mathematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 531–554. DIMACS/AMS (1990)

    Google Scholar 

  31. van Damme, E.: Stability and Perfection of Nash Equilibria, 2nd edn. Springer, Heidelberg (1991)

    Book  Google Scholar 

  32. Vorob’ev, N.N.: Estimates of real roots of a system of algebraic equations. J. Sov. Math. 34(4), 1754–1762 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristoffer Arnsfelt Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hansen, K.A. (2017). The Real Computational Complexity of Minmax Value and Equilibrium Refinements in Multi-player Games. In: Bilò, V., Flammini, M. (eds) Algorithmic Game Theory. SAGT 2017. Lecture Notes in Computer Science(), vol 10504. Springer, Cham. https://doi.org/10.1007/978-3-319-66700-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66700-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66699-0

  • Online ISBN: 978-3-319-66700-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics