Skip to main content

Käte Hey and Margaret Matchett—Two Women PhD Students of Emil Artin

  • Chapter
  • First Online:

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 10))

Abstract

The renowned mathematician Emil Artin supervised 31 doctoral students during his career, two of whom were women. His first doctoral student, Käte Hey, completed her PhD at the University of Hamburg in 1927, writing a thesis on the theory of zeta functions of simple algebras. Artin’s second American PhD student, Margaret Matchett, worked with him at Indiana University, graduating in 1946. Matchett also studied zeta functions, redefining these functions with the help of the recently established concept of idèles attached to a number field. Both women conducted doctoral research on topics closely aligned with Artin’s own celebrated work and quite relevant to the contemporary mathematics of the time. This chapter first provides some context for Artin’s life and work, then explores the lives and the mathematics of Hey and Matchett. We conclude by contrasting the research accomplishments and career trajectories of Hey and Matchett with those of Mina Rees, who received her doctorate in 1931.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    For more on the culturally vibrant atmosphere in fin de siècle Vienna, see the quintessential source [53].

  2. 2.

    Authors’ translation of: “Die Übertragung der Funktionalgleichung der Zetafunktion von Idealklassen in algebraischen Zahlkörpern auf Idealklassen in hyperkomplexen Zahlsystemen ist ein wichtiges und nicht einfaches Problem der Arithmetik dieser Systeme. Die Schwierigkeiten bestehen darin, dass man nur sehr wenig von der Gruppe der Einheiten weiss und dass die Normenformen der Idealklassen unzerlegbar sind, so dass der übliche Weg der Zerlegung in ein Produkt von Gamma-Integralen versagt. Beide Schwierigkeiten werden in vorliegender Arbeit überwunden und die Verfasserin gelangt zu einer Funktionalgleichung von ähnlich einfacher Bauart wie in algebraischen Zahlkörpern. Die Spezialisierungen der Funktionalgleichung auf Quaternionensysteme führt zu schönen und sehr merkwürdigen Klassenzahlformeln, die zeigen, dass die Untersuchung dieser Systeme die Theorie der quadratischen Formen mit vielen anderen Gebieten der Mathematik in Zusammenhang bringt. Die Arbeit war Preisaufgabe der math.–nat. Fakultät für das Jahr 1927. Ich bringe das Prädikat sehr gut in Vorschlag.”

  3. 3.

    This principle states that the isomorphism class of such an algebra Ak is determined by the “local” companions A p defined over the local fields k p , where p ranges over the primes of the underlying field k. This result, obtained in 1930 [14], is of fundamental significance in the arithmetic of division algebras. For the historical background see [51] and [26]. This important implication of Hey’s work was apparently overlooked by Artin when he wrote his report.

  4. 4.

    Scheuer’s first name is unclear and is possibly Erwin. The authors would like to thank Renate Tobies [61] for this information, which came from a database of high school teachers at German schools in the 1930s.

  5. 5.

    Much of the personal information contained in this section is drawn from [23]. That work relied, in part, on [39].

  6. 6.

    By way of comparison, from 1940–1944, women earned 11.8% of America’s PhDs in mathematics and from 1950–1954, women earned 4.8% of the PhDs [43, p. 5]. Indiana was not a school known for its large numbers of PhDs awarded to women in mathematics in the middle of the century. From 1940–1949, seven schools accounted for over half the PhDs awarded to women: Illinois (9), Catholic (8), Michigan (8), Radcliffe (7), Chicago (6), California/Berkeley (5), and Cornell (4) awarded 4 or more PhDs to women [43, p. 26].

  7. 7.

    For more on the evolution of this committee, sometimes referred to as the Dies Committee after its first chairman Martin Dies, Jr., see [47, chapter III].

  8. 8.

    Fuchs testified before the House Un-American Activities Committee on Tuesday, May 15, 1956. Apparently, Fuchs worked with G. Matchett at the National War Labor Board in 1943–1944. See [63, p. 4074] for the reference to Fuchs’ testimony and [63, pp. 4078, 4085–4086, 4094, 4097, and 4110–4103] for references to Gerald and/or Margaret Matchett. The authors extend their generous thanks to an anonymous referee of this paper for calling this source to our attention.

  9. 9.

    Amendment V of the US Constitution reads: “No person …shall be compelled in any criminal case to be a witness against himself, nor be deprived of life, liberty, or property, without due process of law” [62]. See [64] for the Matchetts’ testimony. For personal reminiscences by other university professors and teachers, see [25, pp. 426–446, 455–467].

  10. 10.

    The Lab School is a private school founded as a progressive educational institution by John Dewey in 1896.

  11. 11.

    Not all of those associated with the Lab School remembered her so fondly. One of her former students had mixed feelings about Matchett. Since he was a much stronger student than the others in the class, Matchett encouraged him to think about how to teach the subject during class. “I became a very different sort of teacher from the typical American pure mathematician as a result” [1]. As he looked back, however, this student had “very mixed feelings about her. Like most of the Lab school faculty I was close to, she was a communist. I was very alienated from my family, so they had a great influence on me, which I have come to regret.” This particular student especially regretted attending college and graduate school early and investing a number of his early years in political activism. He later viewed his political involvement as “a stupid waste of time.” He still questions why the Lab School faculty “pushed me like that, and I am sure Ms. Matchett had a lot to do with it.”

  12. 12.

    See Chap. 14 in this volume for further information about Rees and her career.

  13. 13.

    In contrast, David Gilbarg, Artin’s other student at IU, wrote a thesis On the structure of the group of p-adic 1-units on a topic that was not nearly as close to Artin’s own area of research as that of Hey and Matchett.

References

  1. Anonymous. Private communication with one of the authors. 3 April 2012.

    Google Scholar 

  2. Artin, Emil. 1924. Über eine neue Art von L-Reihen. Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität 3: 89–108.

    Article  MATH  Google Scholar 

  3. Artin, Emil. 1927. Beweis des allgemeinen Reziprozitätsgesetzes. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 5: 353–363.

    Article  MathSciNet  MATH  Google Scholar 

  4. Artin, Emil. 1927. Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 8: 292–306.

    Google Scholar 

  5. Artin, Emil. 1928. Über einen Satz von Herrn H. J. Maclagan Wedderburn. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 5: 245–250.

    Article  MATH  Google Scholar 

  6. Artin, Emil. 1928. Zur Theorie der hyperkomplexen Zahlen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 5: 251–260.

    Article  MathSciNet  MATH  Google Scholar 

  7. Artin, Emil. 1928. Zur Arithmetik hyperkomplexer Zahlen.Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 5: 261–289.

    Google Scholar 

  8. Artin, Emil. 1942. Notre Dame Mathematical Lectures No. 2 Galois Theory. Notre Dame: University of Notre Dame Press.

    Google Scholar 

  9. Artin, Emil. 1950. The Theory of Braids. American Scientist 38(1): 112–119.

    MathSciNet  Google Scholar 

  10. Artin, Emil and George Whaples. 1945. Axiomatic Characterization of Fields by the Product Formula for Valuations. Bulletin of the American Mathematical Society 51: 469–492.

    Article  MathSciNet  MATH  Google Scholar 

  11. Artin, Emil and George Whaples. 1946. A Note on Axiomatic Characterization of Fields. Bulletin of the American Mathematical Society 52: 245–247.

    Article  MathSciNet  MATH  Google Scholar 

  12. Audin, Michèle. Le Séminaire de mathématiques 1933–1939. In preparation. http://books.cedram.org/MALSM/. Accessed 19 May 2017.

  13. Brauer, Richard. 1967. Emil Artin. Bulletin of the American Mathematical Society 73: 27–43.

    Article  MathSciNet  MATH  Google Scholar 

  14. Brauer, Richard, Helmut Hasse, and Emmy Noether. 1932. Beweis eines Hauptsatzes in der Theorie der Algebren. Journal für die reine und angewandte Mathematik 167: 399–404.

    MathSciNet  MATH  Google Scholar 

  15. Cassels, John William Scott, and Albrecht Fröhlich, eds. 1967. Algebraic Number Theory. In Proceedings of an Instructional Conference Organized by the London Mathematical Society (a NATO Advanced Study Institute) with the Support of the International Mathematical Union. London: Academic.

    Google Scholar 

  16. Chevalley Claude. 1933. Sur la théorie du corps de classes dans les corps finis et le corps locaux. Journal of the Faculty of Science, the University of Tokyo 2: 365–476.

    MATH  Google Scholar 

  17. Claude Chevalley. 1940. La théorie du corps de classes. Annals of Mathematics 41: 394–418.

    Article  MathSciNet  MATH  Google Scholar 

  18. Dana, Rosamond, and Peter J. Hilton. 1995. Mina Rees. In Mathematical People: Profiles and Interviews, eds. Donald J. Albers and Gerald L. Alexanderson, 257–267. Princeton, NJ: Princeton University Press.

    Google Scholar 

  19. Derbes, David. 2002. Re: [HM] Matchett. Posted June 17. http://mathforum.org/kb/message.jspa?messageID=1183906. Accessed 19 May 2017.

  20. Deuring, Max. 1934. Review of Zorn, Max Note zur analytischen hyperkomplexen Zahlentheorie. Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität Hamburg 9: 197–201 (1933). Zentralblatt fur Mathematik 7: Entry 0007.29701.

    Google Scholar 

  21. Deuring, Max. 1935. Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin: Verlag von Julius Springer.

    Google Scholar 

  22. Dumbaugh, Della, and Joachim Schwermer. 2013. Creating a Life: Emil Artin in America. Bulletin of the American Mathematical Society 50: 321–330. doi:10.1090/S0273-0979-2012-01398-8.

    Article  MathSciNet  MATH  Google Scholar 

  23. Dumbaugh, Della, and Joachim Schwermer. 2015. Emil Artin and Beyond: Class Field Theory and L-Functions. Zürich: European Mathematical Society Publishing House.

    MATH  Google Scholar 

  24. Dumbaugh, Della, and Amy Shell-Gellasch. 2017. The Wide Influence of Leonard Dickson. Notices of the American Mathematical Society 64(7): 936–940.

    Article  MathSciNet  MATH  Google Scholar 

  25. Fariello, Griffin. 1995. Red Scare: Memories of the American Inquisition, An Oral History. New York: W. W. Norton & Company.

    Google Scholar 

  26. Fenster, Della, and Joachim Schwermer. 2005. A Delicate Collaboration: Adrian Albert and Helmut Hasse and the Principal Theorem in Division Algebras in the Early 1930’s. Archive for History of Exact Sciences 59: 349–379.

    Article  MathSciNet  MATH  Google Scholar 

  27. Fujisaki, Genjiro. 1958. On the Zeta-Function of the Simple Algebra Over the Field of Rational Numbers. Journal of the Faculty of Science University of Tokyo Section I 7: 567–604.

    Google Scholar 

  28. Goldin, Claudia. 1997. Career and Family: College Women Look to the Past. In Gender and Family Issues in the Workplace, eds. Francine Blau and Ronald Ehrenberg, 20–58. New York: Russell Sage Foundation.

    Google Scholar 

  29. Goldin, Claudia. 2006. The Quiet Revolution that Transformed Women’s Employment, Education, and Family. American Economic Review, Papers and Proceedings 96: 1–21.

    Article  Google Scholar 

  30. Green, Judy and Jeanne LaDuke. 2008. Pioneering Women in Mathematics: The Pre-1940s PhDs. Providence, RI: American Mathematical Society.

    Book  MATH  Google Scholar 

  31. Hasse, Helmut. 1931. Über p-adische Schiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexer Zahlensysteme. Mathematische Annalen 104: 495–534.

    Article  MathSciNet  MATH  Google Scholar 

  32. Hecke, Erich. 1920. Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung von Primzahlen. Zweite Mitteilung 4: 11–51.

    Google Scholar 

  33. Hey, Käte. 1929. Analytische Zahlentheorie in Systemen hyperkomplexer Zahlen, 48pp. Hamburg: Lütcke & Wulff.

    MATH  Google Scholar 

  34. Keefer, Louis E. 1988. Scholars in Foxholes: the Story of the Army Specialized Training Program in World War II. Jefferson, NC: McFarland.

    Google Scholar 

  35. Kiefer, E. C. 1948. May Meeting of the Illinois Section. The American Mathematical Monthly 55(3): 193–195.

    Google Scholar 

  36. Lazerson, Marvin, Judith Block McLaughlin, Bruce McPherson, and Stephen K. Bailey. 1985. An Education of Value: The Purposes and Practices of Schools. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  37. Lorenz, Falko. 2004. Käte Hey und der Hauptsatz der Algebrentheorie. Mitteilungen der Mathematische Gesellschaft in Hamburg 23: 75–92.

    MATH  Google Scholar 

  38. Mac Lane, Saunders. 1999. Interview conducted by Amy Shell-Gellasch. University of Chicago. January 20.

    Google Scholar 

  39. Matchett, Andrew. 2012. Margaret Matchett: A Brief Biography. Unpublished.

    Google Scholar 

  40. Matchett, Margaret. 1943. On the Introduction of Coordinates in an Affine Plane Geometry. American Mathematical Monthly 50(8): 530–531.

    MathSciNet  Google Scholar 

  41. Matchett, Margaret. 1945. A New Definition of the Gamma Function. American Mathematical Monthly 52(3): 177–178.

    MathSciNet  Google Scholar 

  42. Matchett, Margaret. 1946. On the zeta function for idéles. PhD Thesis, Indiana University. Published in [23].

    Google Scholar 

  43. Murray, Margaret A. M. 2000. Women Becoming Mathematicians: Creating a Professional Identity in Post-World War II America. Cambridge: MIT.

    MATH  Google Scholar 

  44. Matchett, Margaret S. and Daniel W. Snader. 1972. Modern Elementary Mathematics. Boston: Prindle, Weber & Schmidt.

    Google Scholar 

  45. Noether, Emmy. 1929. Hyperkomplexe Größen und Darstellungstheorie. Mathematische Zeitschrift 30: 641–692.

    Article  MathSciNet  MATH  Google Scholar 

  46. Noether, Emmy. 1932. Hyperkomplexe Systeme in ihren Beziehungen zur kommutativen Algebra und Algebra. In Verhandlungen Internationaler Mathematiker Kongress Zürich, ed. Walter Saxer, 2 vols, 1: 189–194. Zürich/Leipzig: Orell Füssli.

    Google Scholar 

  47. Ogden, August. 1984. The Dies Committee: A Study of the Special House Committee for the Investigation of Un-American Activities, 1938–1944. Reprint. Westport, CT: Greenwood Press.

    Google Scholar 

  48. Parshall, Karen. 1985. Joseph H. M. Wedderburn and the Structure Theory of Algebras. Archive for History of Exact Sciences 32(3/4): 223–349.

    Article  MathSciNet  MATH  Google Scholar 

  49. Phillips, Christopher. 2015. The New Math: A Political History. Chicago: The University of Chicago Press.

    MATH  Google Scholar 

  50. Rees, Mina. 1969. Mina Rees Interview by Uta C. Merzbach. Computer Oral History Project, Smithsonian National Museum of American History, March 19. Box 16, Folder 5–7. http://amhistory.si.edu/archives/AC0196_rees690319.pdf. Accessed 12 May 2017.

  51. Roquette, Peter. 2004. The Brauer-Hasse-Noether Theorem in Historical Perspective. Schriften der Mathematisch-Physikalischen Klasse der Heidelberger Akademie der Wissenschaften, Vol. 15. Heidelberg: Springer.

    Google Scholar 

  52. Schedule of Lectures and Recitations. Office of the Registrar Records. Box 457p. Indiana University Archives.

    Google Scholar 

  53. Schorske, Carl. 1961. Fin de siècle Vienna: Politics and Culture. New York: Random House.

    Google Scholar 

  54. Shell-Gellasch, Amy. 2011. In Service to Mathematics: The Life and Work of Mina Rees. Boston, MA: Docent Press.

    MATH  Google Scholar 

  55. Takagi, Teiji. 1920. Über eine Theorie des relativ-Abel’schen Zahlkörpers. Journal of College Science Tokyo 41: 1-133.

    MATH  Google Scholar 

  56. Takagi, Teiji. 1920. Über das Reziprozitätsgesetz in einem beliebigen algebraischen Zahlkörper. Journal of College Science Tokyo 44: 1–50.

    Google Scholar 

  57. Tchebotarev, Nikolai. 1925. Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören. Mathematische Annalen 95: 191–228.

    MATH  Google Scholar 

  58. Tobies, Renate. 1997. Mathematikerinnen und ihre Doktorväter. In Aller Männerkultur zum Trotz: Frauen in Mathematik, Naturwissenschaften und Technik, ed. Renate Tobies, 131–158. Frankfurt, NY: Campus.

    Google Scholar 

  59. Tobies, Renate. 2006. Biographisches Lexikon in Mathematik promovierter Personen. In Algorismus, Studien zur Geschichte der Mathematik und der Naturwissenschaften, ed. Menso Folkerts, Vol. 58. Augsburg: Dr. Erwin Rauner.

    Google Scholar 

  60. Tobies, Renate. 2012. Iris Runge: A Life at the Crossroads of Mathematics, Science and Industry. Basel: Birkhäuser.

    Book  MATH  Google Scholar 

  61. Tobies, Renate. 2017. Online communication with the authors.

    Google Scholar 

  62. The United States National Archives and Records Administration. The Bill of Rights: What Does it Say? https://www.archives.gov/founding-docs/bill-of-rights/what-does-it-say. Accessed 30 June 2017.

  63. United States Congress. 1956. Investigation of Communist Activities in the Rocky Mountain area. Hearings. Washington, D.C.: U.S. Government Print office. https://archive.org/details/investigationofc0156unit. Accessed 30 June 2017.

    Google Scholar 

  64. United States Congress. 1956. Investigation of Communist infiltration of Government. Hearing.. Washington, D.C.: U.S. Government Print office. https://archive.org/details/investigationofc562unit. Accessed 30 June 2017.

    Google Scholar 

  65. University of Denver Bulletin 1943–1944. University of Denver Archives.

    Google Scholar 

  66. Weyl, Hermann to W. T. Martin. 15 January 1945. Artin File, Princeton University Archives.

    Google Scholar 

  67. Witt, Ernst. 1935. Riemann-Rochscher Satz und Zeta-Funktion im Hyperkomplexen. Mathematische Annalen 110: 12–28.

    Article  MathSciNet  MATH  Google Scholar 

  68. Zorn, Max. 1933. Note zur analytischen hyperkomplexen Zahlentheorie. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 9: 197–201.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Della Dumbaugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s) and the Association for Women in Mathematics

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dumbaugh, D., Schwermer, J. (2017). Käte Hey and Margaret Matchett—Two Women PhD Students of Emil Artin. In: Beery, J., Greenwald, S., Jensen-Vallin, J., Mast, M. (eds) Women in Mathematics. Association for Women in Mathematics Series, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-66694-5_3

Download citation

Publish with us

Policies and ethics