Skip to main content

Glutathione-Mediated Biotic Stress Tolerance in Plants

  • Chapter
  • First Online:
Glutathione in Plant Growth, Development, and Stress Tolerance

Abstract

Glutathione, along with ascorbate, is the main non-enzymatic antioxidant and redox buffers in plant cells. The reduced form of glutathione (GSH) is involved in the protection of cells from the oxidative damage induced by environmental challenges. GSH plays an important role in the recycling of reduced ascorbate in the reaction catalyzed by the enzyme dehydroascorbate reductase in the so-called ascorbate–glutathione cycle. Several studies reported that glutathione is involved in the induction of plant defense genes, and the increase in GSH and/or GSH-related enzymes is correlated with the resistance to different biotic challenges, including plant virus, bacteria, and fungi. Also, different works evidenced that decreases in GSH can be responsible for pathogen-elicited symptom development in susceptible plants. In that respect, it is important to mention that treatments leading to an increase in GSH and/or the redox state of glutathione can reduce the virus contents and/or the symptoms even during compatible plant–virus interactions. In addition, subcellular glutathione contents, reactive oxygen species production, and the antioxidative metabolism are considered valuable biotic stress indicators within plants during situations of pathogen attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alguacil MM, Hernandez JA, Caravaca F, Portillo B, Roldán A (2003) Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semiarid soil. Physiol Plant 118:562–570

    Article  CAS  Google Scholar 

  • Amari K, Díaz-Vivancos P, Pallás V, Sánchez-Pina MA, Hernández JA (2007) Oxidative stress induction by Prunus necrotic ringspot virus infection in apricot seeds. Physiol Plant 131:302–310

    CAS  PubMed  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Ball L, Accotto G, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becana M, Dalton DA, Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381

    Article  CAS  Google Scholar 

  • Bernal-Vicente A, Pascual JA, Tittarelli F, Hernández JA, Díaz-Vivancos P (2015) Trichoderma supplementation of compost stimulates the antioxidant defense system in melon plants. J Sci Food Agric 95:2208–2214

    Article  CAS  PubMed  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente-Moreno MJ, Diaz-Vivancos P, Barba-Espín G, Hernández JA (2010) Benzothiadiazole and L-2-oxothiazolidine-4-carboxylic acid reduced the severity of Sharka symptoms in pea leaves: effect on the antioxidative metabolism at subcellular level. Plant Biol 12:88–97

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Moreno MJ, Diaz-Vivancos P, Piqueras A, Hernández JA (2012) Plant growth stimulation in Prunus species plantlets by BTH or OTC treatments under in vitro conditions. J Plant Physiol 169:1074–1083

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Moreno MJ, Diaz-Vivancos P, Rubio M, Fernandez N, Hernández JA (2013) Chloroplast protection in plum pox virus-infected peach plants by L-2-oxo-4-thiazolidine-carboxylic acid treatments: effect in the proteome. Plant Cell Environ 36:640–654

    Article  CAS  PubMed  Google Scholar 

  • Dalton DA, Russell SA, Hanus FJ, Pascoe GA, Evans HJ (1986) Enzymatic reactions of ascorbate and glutathione that prevent peroxide damage in soybean root nodules. Proc Natl Acad Sci U S A 83:3811–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalton DA, Post CJ, Langeberg L (1991) Effects of ambient oxygen and of fixed nitrogen on concentrations of glutathione, ascorbate, and associated enzymes in soybean root nodules. Plant Physiol 96(3):812–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Vivancos P, Clemente-Moreno MJ, Rubio M, Olmos E, Garcia JA, Martinez-Gomez P, Hernandez JA (2008) Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J Exp Bot 59:2147–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Vivancos P, Dong Y, Ziegler K, Markovic J, Pallardo FV, Pellny TK, Verrier PJ, Foyer CH (2010a) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64:825–838

    Article  Google Scholar 

  • Diaz-Vivancos P, Wolff T, Markovic J, Pallardo FV, Foyer CH (2010b) A nuclear glutathione cycle within the cell cycle. Biochem J 431:169–178

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione – linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants. J Biol Chem 277:30859–30869

    Article  CAS  PubMed  Google Scholar 

  • Faize M, Burgos L, Faize L, Petri C, Barba-Espin G, Díaz-Vivancos P, Clemente-Moreno MJ, Alburquerque N, Hernandez JA (2012) Modulation of tobacco bacterial disease resistance using cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase. Plant Pathol 61:858–866

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11(4):861–905

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18(16):2087–2090

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Theodoulou FL, Delrot S (2001) The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci 6(10):486–492

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1): 2–18

    Google Scholar 

  • Frendo P, Gallesi D, Turnbull R, Van de Sype G, Hérouart D, Puppo A (1999) Localization of glutathione and homoglutathione in Medicago truncatula is correlated to a differential expression of genes involved in their synthesis. Plant J 17:215–219

    Article  CAS  Google Scholar 

  • Frendo P, Harrison J, Norman C, Hernandez-Jimenez MJ, Van de Sype G, Gilabert A, Puppo A (2005) Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol Plant-Microbe Interact 18:254–259

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Ng FK, Liu P, Wong SM (2012) Hibiscus chlorotic ringspot virus coat protein upregulates sulfur metabolism genes for enhanced pathogen defense. Mol Plant-Microbe Interact 25:1574–1583

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Limones C, Hervás A, Navas-Cortés JA, Jiménez-Diaz RM, Tena M (2002) Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f.sp. ciceris. Physiol Mol Plant Pathol 61:325–337

    Article  CAS  Google Scholar 

  • Ghanta S, Bhattacharyya D, Sinha R, Banerjee A, Chattopadhyay S (2011) Nicotiana tabacum overexpressing ɣ-ECS exhibits biotic stress tolerance likely through NPR1- dependent salicylic acid-mediated pathway. Planta 233:895–910

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Go YM, Jones DP (2010) Redox control system in the nucleus: mechanisms and functions. Antioxid Redox Signal 12:489–509

    Article  Google Scholar 

  • Gong H, Jiao Y, Hu WW, Pua EC (2005) Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Mol Biol 57:53–66

    Google Scholar 

  • Green RM, Graham M, O’Donovan MR, Chipman JK, Hodges NJ (2006) Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis 21:383–390

    Article  CAS  PubMed  Google Scholar 

  • Großkinsky DK, Koffler BE, Roitsch T, Maier R, Zechmann B (2012) Compartment-specific antioxidative defense in Arabidopsis against virulent and avirulent Pseudomonas syringae. Phytopathology 102(7):662–673

    Article  PubMed  Google Scholar 

  • Gullner G, Tóbiás I, Fodor J, Kőmíves T (1999) Elevation of glutathione level and activation of glutathione-related enzymes affect virus infection in tobacco. Free Radic Res 31:S155–S161

    Article  CAS  PubMed  Google Scholar 

  • Gutscher M, Pauleau AL, Marty L, Brach T, Wabnitz GH, Samstag Y, Meyer AJ, Dick TP (2008) Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5:553–559

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G (2013) Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 18:2106–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Ros-Barceló A, Sevilla F (2001) Antioxidant systems and O2 .-/H2O2 production in the apoplast of Pisum sativum L. leaves: its relation with NaCl-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández JA, Rubio M, Olmos E, Ros-Barceló A, Martínez-Gómez P (2004) Oxidative stress induced by long-term Plum pox virus infection in peach (Prunus persica L. cv GF305). Physiol Plant 122:486–495

    Article  Google Scholar 

  • Hernández JA, Diaz-Vivancos P, Rubio M, Olmos E, Ros-Barceló A, Martínez-Gómez P (2006) Long-term PPV infection produces an oxidative stress in a susceptible apricot cultivar but not in a resistant cultivar. Physiol Plant 126:140–152

    Article  Google Scholar 

  • Hernández JA, Gullner G, Clemente-Moreno MJ, Künstler A, Juhász C, Diaz-Vivancos P, Király L (2016) Oxidative stress and antioxidative responses in plant-virus interactions. Physiol Mol Plant Pathol 94:134–148

    Article  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5(6):263–267

    Article  CAS  PubMed  Google Scholar 

  • Hakmaoui A, Pérez-Bueno ML, García-Fontana B, Camejo D, Jiménez A, Sevilla F, Barón M (2012) Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of Pepper mild mottle virus. J Exp Bot 63: 5487–5496

    Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17(3):957–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Király L, Künstler A, Höller K, Fattinger M, Juhász C, Müller M, Gullner G, Zechmann B (2012) Sulfate supply influences compartment specific glutathione metabolism and confers enhanced resistance to tobacco mosaic virus during a hypersensitive response. Plant Physiol Biochem 59:44–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopriva S, Rennenberg H (2004) Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J ExpBot 55:1831–1842

    CAS  Google Scholar 

  • Krueger S, Niehl A, Lopez Martin MC, Steinhauser D, Donath A, Hildebrandt T, Romero LC, Hoefgen R, Gotor C, Hesse H (2009) Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in Arabidopsis. Plant Cell Environ 32:349–367

    Article  CAS  PubMed  Google Scholar 

  • Kuźniak E (2010) The ascorbate–gluathione cycle and related redox signals in plant–pathogen interactions. In: Anjum NA et al (eds) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 115–136

    Chapter  Google Scholar 

  • Kuźniak E, Skłodowska M (1999) The effect of Botrytis cinerea infection on ascorbate-glutathione cycle in tomato leaves. Plant Sci 148:69–76

    Google Scholar 

  • Kuźniak E, Sklodowska A (2001) Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Sci 160:723–731

    Article  PubMed  Google Scholar 

  • Kużniak E, Sklodowska M (2004) Differential implication of glutathione, glutathione-metabolizing enzymes and ascorbate in tomato resistance to Pseudomonas syringae. J Phytopathol 152:529–536

    Article  Google Scholar 

  • Kuźniak E, Skłodowska M (2005) Compartment-specific role of the ascorbate-glutathione cycle in the response of tomato leaf cells to Botrytis cinerea infection. J Exp Bot 56(413):921–933

    Article  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Matern S, Peskan-Berghoefer T, Gromes R, Vazquez Kiesel R, Rausch T (2015) Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae. J Exp Bot 66:1935–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May MJ, Parker JE, Daniels MJ, Leaver CJ, Cobbett CS (1996) An Arabidopsis mutant depleted in glutathione shows unaltered responses to fungal and bacterial pathogens. Mol Plant-Microbe Interact 9:349–356

    Article  CAS  Google Scholar 

  • Meyer AJ, Fricker MD (2000) Direct measurement of glutathione in epidermal cells of intact Arabidopsis roots by two-photon laser scanning microscopy. J Microsc 198:174–181

    Article  CAS  PubMed  Google Scholar 

  • Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulates NPR1 function through redox changes. Cell 113:935–944

    Article  CAS  PubMed  Google Scholar 

  • Mukaihara T, Hatanaka T, Nakano M, Oda K (2016) Ralstonia solanacearum type III effector RipAY is a glutathione-degrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity. mBio 7(2):e00359-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller M, Zellnig G, Urbanek A, Zechmann B (2005) Recent developments in methods intracellulary localizing glutathione within plant tissues and cells (a minireview). Phyton 45:45–55

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Radwan S, Peterson A, Zhao P, Badr AF, Xiang C, Oliver DJ (2007) Characterization of the extracellular gamma-glutamyltranspeptidases, GGT1 and GGT2, in Arabidopsis. Plant J 49(5):865–877

    Article  CAS  PubMed  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2007) Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49:159–172

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  Google Scholar 

  • Schnaubelt D, Queval G, Dong Y, Diaz-Vivancos P, Makgopa ME, Howell G, De Simone A, Bai J, Hannah MA, Foyer CH (2015) Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Plant Cell Environ 38:266–279

    Article  CAS  PubMed  Google Scholar 

  • Simon UK, Polanschütz LM, Koffler BE, Zechmann B (2013) High resolution imaging of temporal and spatial changes of subcellular ascorbate, glutathione and H2O2 distribution during Botrytis cinerea infection in Arabidopsis. PLoS ONE 8(6):e65811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sklodowska M, Gajewka E, Kuźniak E, Wielanek M, Mikiciński A, Sobixzewski P (2011) Antioxidant profile and polyphenol oxidase activities in apple leaves after Erwinia amylovora infection and pretreatment with a benzothiadiazole-type resistance inducer (BTH). J Phytopathol 159:495–504

    Google Scholar 

  • Song XS, Wang YJ, Mao WH, Shi K, Zhou YH (2009) Effect of cucumber mosaic virus infection on electron transport and antioxidant system in chloroplasts and mitochondria of cucumber and tomato leaves. Physiol Plant 135:246–257

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  CAS  PubMed  Google Scholar 

  • Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353(6294):72–74

    Article  CAS  PubMed  Google Scholar 

  • Tiedemann AV (1997) Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol Mol Plant Pathol 50:151–166

    Article  CAS  Google Scholar 

  • Tolin S, Arrigoni G, Trentin AR, Veljovic-Jovanovic S, Pivato M, Zechmann B, Masi A (2013) Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamylcyclein plant’s adaptation to environment. Proteomics 13:2031–2045

    Google Scholar 

  • Torres MA, Dangl JL, Jones JDG (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99:517–522

    Article  CAS  PubMed  Google Scholar 

  • Vahisalu T, Puzõrjova I, Brosché M, Valk E, Lepiku M, Moldau H, Pechter P, Wang YS, Lindgren O, Salojärvi J, Loog M, Kangasjärvi J, Kollist H (2010) Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1. Plant J 62(3):442–453

    Article  CAS  PubMed  Google Scholar 

  • Vanacker H, Carver TL, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117(3):1103–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanacker H, Carver TL, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123(4):1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughen SC, Cobbett CS, Van Montagu M, Inzé D (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE 2 gene defines a glutathione dependent pathway involved in the initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vianello A, Zancani M, Peresson C, Petrussa E, Casolo V, Krajňáková J, Patui S, Braidot E, Macrì F (2007) Plant mitochondrial pathway leading to programmed cell death. Physiol Plant 129:242–252

    Article  CAS  Google Scholar 

  • Wingate VPM, Lawton MA, Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 87:206–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322(Pt 3):681–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechmann B, Mauch F, Sticher L, Müller M (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J Exp Bot 59(14):4017–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechmann B, Müller M (2010) Subcellular compartmentation of glutathione in dicotyledonous plants. Protoplasma 246(1-4):15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechmann B, Zellnig G, Müller M (2005) Changes in the subcellular distribution of glutathione during virus infection in Cucurbita pepo (L.) Plant Biol 7:49–57

    Article  CAS  PubMed  Google Scholar 

  • Zechmann B, Zellnig G, Müller M (2007a) Virus-induced changes in the subcellular distribution of glutathione precursors in Cucurbita pepo (L.) Plant Biol 9:427–434

    Article  CAS  PubMed  Google Scholar 

  • Zechmann B, Zellnig G, Urbanek-Krajnc A, Müller M (2007b) Artificial elevation of glutathione affects symptom development in ZYMV-infected Cucurbita pepo L. plants. ArchVirol 157:747–762

    Google Scholar 

Download references

Acknowledgments

PDV thanks CSIC and the Spanish Ministry of Economy and Competitiveness for their “Ramon &Cajal” research contract, co-financed by FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Diaz-Vivancos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernández, J.A., Barba-Espín, G., Diaz-Vivancos, P. (2017). Glutathione-Mediated Biotic Stress Tolerance in Plants. In: Hossain, M., Mostofa, M., Diaz-Vivancos, P., Burritt, D., Fujita, M., Tran, LS. (eds) Glutathione in Plant Growth, Development, and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-66682-2_14

Download citation

Publish with us

Policies and ethics