Skip to main content

Sulfur Assimilation and Glutathione Metabolism in Plants

  • Chapter
  • First Online:
Glutathione in Plant Growth, Development, and Stress Tolerance

Abstract

Sulfur is an essential element for all organisms. Plants utilize soil sulfate to synthesize an amino acid, cysteine, which is used for a variety of sulfur-containing compounds such as glutathione (GSH), methionine, proteins, lipids, coenzymes, and various secondary metabolites. Since animals cannot synthesize organic sulfur compounds from inorganic ones, sulfate assimilation in plants is important for the global sulfur cycle.

GSH is a tripeptide synthesized from the amino acids cysteine, glutamic acid, and glycine. By controlling the redox states of proteins and chemicals, GSH functions in many biological processes including enzymatic activity, detoxification of toxic agents, and eventually influences plant growth, development, and stress management in response to both abiotic and biotic factors. Maintaining an appropriate redox environment, for which GSH levels are crucial, is thus important for plant life.

GSH levels in plant cells are controlled by both synthesis and degradation processes. GSH is synthesized from cysteine by two-step reactions in plastids and cytosol. Since cysteine levels are relatively low in the cells, the sulfate assimilation pathway composed of sulfate uptake, sulfate reduction, and assimilation into cysteine, is a rate-limiting step in GSH synthesis. In this chapter, we review the molecular machineries and regulatory aspects of the sulfur assimilation pathway and GSH metabolism in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Alvarez C, Calo L, Romero LC, Garcia I, Gotor C (2010) An O-acetylserine(thiol)lyase homolog with L-cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol 152:656–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awazuhara M, Kim H, Hayashi H, Chino M, Kim SG, Fujiwara T (2002) Composition of seed storage proteins changed by glutathione treatment of soybeans. Biosci Biotechnol Biochem 66:1751–1754

    Article  CAS  PubMed  Google Scholar 

  • Awazuhara M, Fujiwara T, Hayashi H, Watanabe-Takahashi A, Takahashi H, Saito K (2005) The function of SULTR2;1 sulfate transporter during seed development in Arabidopsis thaliana. Physiol Plant 125:95–105

    Google Scholar 

  • Bermudez MA, Paez-Ochoa MA, Gotor C, Romero LC (2010) Arabidopsis S-sulfocysteine synthase activity is essential for chloroplast function and long-day light-dependent redox control. Plant Cell 22:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohrer AS, Yoshimoto N, Sekiguchi A, Rykulski N, Saito K, Takahashi H (2014) Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana. Front Plant Sci 5:750

    PubMed  Google Scholar 

  • Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765–1773

    Article  CAS  PubMed  Google Scholar 

  • Calderwood A, Kopriva S (2014) Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide 41:72–78

    Article  CAS  PubMed  Google Scholar 

  • Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB (2013) SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. Plant J 73:607–616

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, Ren Y, Tang X, Xiao F, Cao S (2016) Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol 171:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    Article  CAS  PubMed  Google Scholar 

  • Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation–the same or not the same? Mol Plant 3:314–325

    Google Scholar 

  • Droux M (2004) Sulfur assimilation and the role of sulfur in plant metabolism: a survey. Photosynth Res 79:331–348

    Article  CAS  PubMed  Google Scholar 

  • Droux M, Ruffet ML, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants – structural and kinetic properties of the free and bound enzymes. Eur J Biochem 255:235–245

    Article  CAS  PubMed  Google Scholar 

  • Geu-Flores F, Nielsen MT, Nafisi M, Moldrup ME, Olsen CE, Motawia MS, Halkier BA (2009) Glucosinolate engineering identifies a γ-glutamyl peptidase. Nat Chem Biol 5:575–577

    Article  CAS  PubMed  Google Scholar 

  • Geu-Flores F, Moldrup ME, Bottcher C, Olsen CE, Scheel D, Halkier BA (2011) Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell 23:2456–2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser K, Kanawati B, Kubo T, Schmitt-Kopplin P, Grill E (2014) Exploring the Arabidopsis sulfur metabolome. Plant J 77:31–45

    Article  PubMed  Google Scholar 

  • Grzam A, Martin MN, Hell R, Meyer AJ (2007) γ-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Lett 581:3131–3138

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Marcos JF, Roberts MA, Campbell EI, Wray JL (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia Coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity. Proc Natl Acad Sci U S A 93:13377–13382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148:1055–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms K, von Ballmoos P, Brunold C, Hofgen R, Hesse H (2000) Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J 22:335–343

    Article  CAS  PubMed  Google Scholar 

  • Hatzfeld Y, Lee S, Lee M, Leustek T, Saito K (2000a) Functional characterization of a gene encoding a fourth ATP sulfurylase isoform from Arabidopsis thaliana. Gene 248:51–58

    Article  CAS  PubMed  Google Scholar 

  • Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, Saito K (2000b) β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123:1163–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heeg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell 20:168–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hell R, Bergmann L (1990) γ-Glutamylcysteine synthetase in higher-plants – catalytic properties and subcellular-localization. Planta 180:603–612

    Article  CAS  PubMed  Google Scholar 

  • Hell R, Jost R, Berkowitz O, Wirtz M (2002) Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana. Amino Acids 22:245–257

    Article  CAS  PubMed  Google Scholar 

  • Hell R, Khan MS, Wirtz M (2010) Cellular biology of sulfur and its functions in plants. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients, plant cell monographs 17. Springer, Berlin/Heidelberg, pp 243–279

    Chapter  Google Scholar 

  • Hernandez LE, Sobrino-Plata J, Montero-Palmero MB, Carrasco-Gil S, Flores-Caceres ML, Ortega-Villasante C, Escobar C (2015) Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress. J Exp Bot 66:2901–2911

    Article  CAS  PubMed  Google Scholar 

  • Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM (2007) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19:2653–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-l-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33:651–663

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J, Reichelt M, Gershenzon J, Papenbrock J, Saito K (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280:25590–25595

    Article  CAS  PubMed  Google Scholar 

  • Hothorn M, Wachter A, Gromes R, Stuwe T, Rausch T, Scheffzek K (2006) Structural basis for the redox control of plant glutamate cysteine ligase. J Biol Chem 281:27557–27565

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004a) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004b) Root-to-shoot transport of sulfate in Arabidopsis: evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198–4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawashima CG, Berkowitz O, Hell R, Noji M, Saito K (2005) Characterization and expression analysis of a serine acetyltransferase gene family involved in a key step of the sulfur assimilation pathway in Arabidopsis. Plant Physiol 137:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  CAS  PubMed  Google Scholar 

  • Kawashima CG, Matthewman CA, Huang S, Lee BR, Yoshimoto N, Koprivova A, Rubio-Somoza I, Todesco M, Rathjen T, Saito K, Takahashi H, Dalamay T, Kopriva S (2011) Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. Plant J 66:863–876

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Haas FH, Samami AA, Gholami AM, Bauer A, Fellenberg K, Reichelt M, Hansch R, Mendel RR, Meyer AJ, Wirtz M, Hell R (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22:1216–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Tikoo S, Maity S, Sengupta S, Kaur A, Bachhawat AK (2012) Mammalian proapoptotic factor ChaC1 and its homologues function as γ-glutamyl cyclotransferases acting specifically on glutathione. EMBO Rep 13:1095–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Kaur A, Chattopadhyay B, Bachhawat AK (2015) Defining the cytosolic pathway of glutathione degradation in Arabidopsis thaliana: role of the ChaC/GCG family of γ-glutamyl cyclotransferases as glutathione-degrading enzymes and AtLAP1 as the Cys-Gly peptidase. Biochem J 468:73–85

    Article  CAS  PubMed  Google Scholar 

  • Koprivova A, Suter M, Op den Camp R, Brunold C, Kopriva S (2000) Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122:737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopriva S, Koprivova A (2004) Plant adenosine 50-phosphosulphate reductase: the past, the present, and the future. J Exp Bot 55:1775–1783

    Article  CAS  PubMed  Google Scholar 

  • Koprivova A, Giovannetti M, Baraniecka P, Lee BR, Grondin C, Loudet O, Kopriva S (2013) Natural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in Arabidopsis. Plant Physiol 163:1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutz A, Muller A, Hennig P, Kaiser WM, Piotrowski M, Weiler EW (2002) A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J 30:95–106

    Article  CAS  PubMed  Google Scholar 

  • Kuzuhara Y, Isobe A, Awazuhara M, Fujiwara T, Hayashi H (2000) Glutathione levels in phloem sap of rice plants under sulfur deficient conditions. Soil Sci Plant Nutr 46:265–270

    Article  CAS  Google Scholar 

  • Labrou NE, Papageorgiou AC, Pavli O, Flemetakis E (2015) Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotechnol 32:186–194

    Article  CAS  PubMed  Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO42- uptake in intact canola (the role of phloem-translocated glutathione). Plant Physiol 111:147–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T, Glass AD, Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95

    Article  CAS  PubMed  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  CAS  PubMed  Google Scholar 

  • Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057

    CAS  PubMed  Google Scholar 

  • Long SR, Kahn M, Seefeldt L, Tsay YF, Kopriva S (2015) Chapter 16: Nitrogen and sulfur. In: Buchana BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. Wiley Blackwell, Oxford, pp 746–768

    Google Scholar 

  • Loudet O, Saliba-Colombani V, Camilleri C, Calenge F, Gaudon V, Koprivova A, North K, Kopriva S, Daniel-Vedele F (2007) Natural variation for sulfate content in Arabidopsis thaliana is highly controlled by APR2. Nat Genet 39:896–900

    Article  CAS  PubMed  Google Scholar 

  • Lunn JE, Droux M, Martin J, Douce R (1990) Localization of ATP-sulfurylase and O-acetylserine (thiol)lyase in spinach leaves. Plant Physiol 94:1345–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin MN, Saladores PH, Lambert E, Hudson AO, Leustek T (2007) Localization of members of the γ-glutamyl transpeptidase family identifies sites of glutathione and glutathione S-conjugate hydrolysis. Plant Physiol 144:1715–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132:597–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004a) A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J 38:779–789

    Article  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004b) Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signaling and regulation. J Exp Bot 55:1843–1849

    Article  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:305–314

    Article  CAS  PubMed  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235–3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama-Nakashita A, Watanabe-Takahashi A, Inoue E, Yamaya T, Saito K, Takahashi H (2015) Sulfurresponsive elements in the 3'-nontranscribed intergenic region are essential for the induction of SULFATE TRANSPORTER 2;1 gene expression in Arabidopsis roots under sulfur deficiency. Plant Cell 27:1279–1296

    Google Scholar 

  • Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Muller C, Salcedo-Sora E, Kruse C, Orsel M, Hell R, Miller AJ, Bray P, Foyer CH, Murray JA, Meyer AJ, Cobbett CS (2010) Plant homologs of the plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci U S A 107:2331–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May MJ, Leaver CJ (1994) Arabidopsis thaliana γ-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acad Sci U S A 91:10059–10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Cozatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AJ, Shen Q, Xu G (2009) Freeways in the plant: transporters for N, P and S and their regulation. Curr Opin Plant Biol 12:284–290

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Gakiere B, Kempa S, Adamik M, Willmitzer L, Hesse H, Hoefgen R (2004) Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. J Exp Bot 55:1861–1870

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138:304–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. The Arabidopsis book. Am Soc Plant Biol 9: 2–32. URL: http://www.bioone.org/doi/full/10.1199/tab.0142

  • Noji M, Inoue K, Kimura N, Gouda A, Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273:32739–32745

    Google Scholar 

  • Noji M, Saito K (2002) Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulfur metabolic engineering in plants. Amino Acids 22:231–243

    Article  CAS  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Radwan S, Peterson A, Zhao P, Badr AF, Xiang C, Oliver DJ (2007a) Characterization of the extracellular γ-glutamyl transpeptidases, GGT1 and GGT2, in Arabidopsis. Plant J 49:865–877

    Article  CAS  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Zhao P, Xiang C, Oliver DJ (2007b) Glutathione conjugates in the vacuole are degraded by γ-glutamyl transpeptidase GGT3 in Arabidopsis. Plant J 49:878–888

    Article  CAS  PubMed  Google Scholar 

  • Ohkama-Ohtsu N, Oikawa A, Zhao P, Xiang C, Saito K, Oliver DJ (2008) A γ-glutamyl transpeptidase-independent pathway of glutathione catabolism to glutamate via 5-oxoproline in Arabidopsis. Plant Physiol 148:1603–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkama-Ohtsu N, Sasaki-Sekimoto Y, Oikawa A, Jikumaru Y, Shinoda S, Inoue E, Kamide Y, Yokoyama T, Hirai MY, Shirasu K, Kamiya Y, Oliver DJ, Saito K (2011) 12-oxo-phytodienoic acid-glutathione conjugate is transported into the vacuole in Arabidopsis. Plant Cell Physiol 52:205–209

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M, Meister A (1970) The γ-glutamyl cycle: a possible transport system for amino acids. Proc Natl Acad Sci U S A 67:1248–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2007) Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49:159–172

    Article  CAS  PubMed  Google Scholar 

  • Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J 53:999–1012

    Article  CAS  PubMed  Google Scholar 

  • Paulose B, Chhikara S, Coomey J, Jung HI, Vatamaniuk O, Dhankher OP (2013) A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis. Plant Cell 25:4580–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queval G, Thominet D, Vanacker H, Miginiac-Maslow M, Gakiere B, Noctor G (2009) H2O2-activated up-regulation of glutathione in Arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Mol Plant 2:344–356

    Google Scholar 

  • Rotte C, Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and 5'-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124:715–724

    Google Scholar 

  • Rouached H, Wirtz M, Alary R, Hell R, Arpat AB, Davidian JC, Fourcroy P, Berthomieu P (2008) Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol 147:897–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K (2004) Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136:2443–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlaeppi K, Bodenhausen N, Buchala A, Mauch F, Reymond P (2008) The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera Littoralis. Plant J 55:774–786

    Google Scholar 

  • Setya A, Murillo M, Leustek T (1996) Sulfate reduction in higher plants: molecular evidence for a novel 5′-adenylylsulfate reductase. Proc Natl Acad Sci U S A 93:13383–13388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibagaki N, Grossman AR (2010) Binding of cysteine synthase to the STAS domain of sulfate transporter and its regulatory consequences. J Biol Chem 285:25094–25102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    Article  CAS  PubMed  Google Scholar 

  • Storozhenko S, Belles-Boix E, Babiychuk E, Herouart D, Davey MW, Slooten L, Van Montagu M, Inze D, Kushnir S (2002) γ-glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties. Plant Physiol 128:1109–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su T, Xu J, Li Y, Lei L, Zhao L, Yang H, Feng J, Liu G, Ren D (2011) Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23:364–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler JD, Engler G, VanMontagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:11102–11107

    Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Buchner P, Yoshimoto N, Hawkesford MJ, Shiu SH (2011a) Evolutionary relationships and functional diversity of plant sulfate transporters. Front Plant Sci 2:119

    CAS  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011b) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Buchner P, Yoshimoto N, Hawkesford MJ, Shiu SH (2012) Evolutionary relationships and functional diversity of plant sulfate transporters. Front Plant Sci 2:a119

    Article  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krahenbuhl U, den Camp RO, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5'-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J 31:729–740

    Google Scholar 

  • Vidmar JJ, Tagmount A, Cathala N, Touraine B, Davidian JCE (2000) Cloning and characterization of a root specific high-affinity sulfate transporter from Arabidopsis thaliana. FEBS Lett 475:65–69

    Article  CAS  PubMed  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    Google Scholar 

  • Wang CL, Oliver DJ (1996) Cloning of the cDNA and genomic clones for glutathione synthetase from Arabidopsis thaliana and complementation of a gsh2 mutant in fission yeast. Plant Mol Biol 31:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Kusano M, Oikawa A, Fukushima A, Noji M, Saito K (2008a) Physiological roles of the beta-substituted alanine synthase gene family in Arabidopsis. Plant Physiol 146:310–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008b) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 20:2484–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wawrzynska A, Lewandowska M, Sirko A (2010) Nicotiana tabacum EIL2 directly regulates expression of at least one tobacco gene induced by sulphur starvation. J Exp Bot 61:889–900

    Article  CAS  PubMed  Google Scholar 

  • Wirtz M, Hell R (2007) Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. Plant Cell 19:625–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirtz M, Berkowitz O, Droux M, Hell R (2001) The cysteine synthase complex from plants – mitochondrial serine acetyltransferase from Arabidopsis thaliana carries a bifunctional domain for catalysis and protein-protein interaction. Eur J Biochem 268:686–693

    Article  CAS  PubMed  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonekura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y, Kusumi T, Hase T (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize. Plant Physiol 122:887–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr1;3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H (2007) Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol 145:378–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Pasini R, Dan H, Joshi N, Zhao YH, Leustek T, Zheng ZL (2014) Aberrant gene expression in the Arabidopsis SULTR1;2 mutants suggests a possible regulatory role for this sulfate transporter in response to sulfur nutrient status. Plant J 77:185–197

    Google Scholar 

  • Zuber H, Davidian JC, Aubert G, Aime D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K (2010) The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol 154:913–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by Japan Society for the Promotion of Science KAKENHI grant Number 15KT0028 (for N.O.O. and A.M.N.) and 24380040 (for A.M.N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Maruyama-Nakashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maruyama-Nakashita, A., Ohkama-Ohtsu, N. (2017). Sulfur Assimilation and Glutathione Metabolism in Plants. In: Hossain, M., Mostofa, M., Diaz-Vivancos, P., Burritt, D., Fujita, M., Tran, LS. (eds) Glutathione in Plant Growth, Development, and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-66682-2_13

Download citation

Publish with us

Policies and ethics