Skip to main content

Chemistry, Biosynthesis, and Antioxidative Function of Glutathione in Plants

  • Chapter
  • First Online:
Glutathione in Plant Growth, Development, and Stress Tolerance

Abstract

Glutathione, a tripeptide constituted by glutamate, cysteine, and glycine, is an abundant metabolite that functions as a master regulator of intracellular redox homeostasis. Under optimal conditions, glutathione is mostly present in the reduced form (GSH), with a free thiol group. The link of two molecules of GSH, via a disulfide bond, leads to the formation of glutathione disulfide (GSSG). GSH can be oxidized, directly or indirectly, by reactive oxygen species, working as a scavenger that prevents excessive oxidation of cellular environment. GSH can also react with different thiols to form mixed disulfides. These reversible redox reactions are responsible for many GSH functions.

GSH biosynthesis is dependent on the activity of the two ATP-dependent enzymes γ-glutamylcysteine synthetase and glutathione synthetase, encoded, respectively, by the nuclear GSH1 and GSH2 genes. The first step of GSH biosynthesis occurs in the plastids, while the second step can take place in both plastids and cytosol. The use of different gsh1 mutants and GSH1 overexpressing plants has helped to shed light on the multiple roles of GSH in plant growth, development, and response to changing environment. The maintenance of a high GSH/GSSG ratio is crucial for many physiological functions, and a decrease in this ratio can be utilized as an indicator of oxidative stress. The GSH/GSSG ratio also acts as an important regulator of several mechanisms involved in plant development and in plant stress response. In addition to redox state, also GSH concentration and its subcellular distribution are central factors controlling redox homeostasis and signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arisi ACM, Noctor G, Foyer CH, Jouanin L (1997) Modification of thiol contents in poplars (Populus tremula x P. alba) overexpressing enzymes involved in glutathione synthesis. Planta 203:362–372

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Au KKC, Perez-Gomez J, Neto H, Muller C, Meyer AJ, Fricker MD, Moore I (2012) A perturbation in glutathione biosynthesis disrupts endoplasmic reticulum morphology and secretory membrane traffic in Arabidopsis thaliana. Plant J 71:881–894

    Article  CAS  PubMed  Google Scholar 

  • Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S, Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16:2448–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bick JA, Aslund F, Chen YC, Leustek T (1998) Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5′-adenylylsulfate reductase. Proc Natl Acad Sci U S A 95:8404–8409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biterova EI, Barycki JJ (2009) Mechanistic details of glutathione biosynthesis revealed by crystal structures of Saccharomyces cerevisiae glutamate cysteine ligase. J Biol Chem 284:32700–32708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buwalda F, Dekok LJ, Stulen I, Kuiper PJC (1988) Cysteine, gamma-glutamyl-cysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur. Physiol Plant 74:663–668

    Article  CAS  Google Scholar 

  • Buwalda F, Stulen I, Dekok LJ, Kuiper PJC (1990) Cysteine, gamma-glutamyl-cysteine and glutathione contents of spinach leaves as affected by darkness and application of excess sulfur II. Glutathione accumulation in detached leaves exposed to H2S in the absence of light is stimulated by the supply of glycine to the petiole. Physiol Plant 80:196–204

    Article  CAS  Google Scholar 

  • Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006) Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol 141:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaouch S, Queval G, Vanderauwera S, Mhamdi A, Vandorpe M, Langlois-Meurinne M, Van Breusegem F, Saindrenan P, Noctor G (2010) Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner. Plant Physiol 153:1692–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng JC, Seeley KA, Sung ZR (1995) RML1 and RML2, Arabidopsis genes required for cell-proliferation at the root-tip. Plant Physiol 107(107):365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in gamma-glutamylcysteine synthetase. Plant J 16:73–78

    Article  CAS  PubMed  Google Scholar 

  • Copley SD, Dhillon JK (2002) Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol 3:5

    Article  Google Scholar 

  • Cummins I, Dixon DP, Freitag-Pohl S, Skipsey M, Edwards R (2011) Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev 43:266–280

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos P, Dong YP, Ziegler K, Markovic J, Pallardo FV, Pellny TK, Verrier PJ, Foyer CH (2010a) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64:825–838

    Article  CAS  Google Scholar 

  • Diaz-Vivancos P, Wolff T, Markovic J, Pallardo FV, Foyer CH (2010b) A nuclear glutathione cycle within the cell cycle. Biochem J 431:169–178

    Article  CAS  PubMed  Google Scholar 

  • Dinescu A, Cundari TR, Bhansali VS, Luo JL, Anderson ME (2004) Function of conserved residues of human glutathione synthetase – implications for the ATP-grasp enzymes. J Biol Chem 279:22412–22421

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Edwards R (2010) Glutathione S-transferases. Arabidopsis Book 8:e0131

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, Davis BG, Edwards R (2002) Functional divergence in the glutathione transferase superfamily in plants – identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277:30859–30869

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle SM, Diamond M, McCabe PF (2010) Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures. J Exp Bot 61:473–482

    Article  CAS  PubMed  Google Scholar 

  • Dubreuil-Maurizi C, Vitecek J, Marty L, Branciard L, Frettinger P, Wendehenne D, Meyer AJ, Mauch F, Poinssot B (2011) Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression, and the hypersensitive response. Plant Physiol 157:2000–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular-distribution of multiple forms of glutathione-reductase in leaves of pea (Pisum sativum L). Planta 180:278–284

    Article  CAS  PubMed  Google Scholar 

  • Enyedi B, Varnai P, Geiszt M (2010) Redox state of the endoplasmic reticulum is controlled by Ero1L-alpha and intraluminal calcium. Antioxid Redox Signal 13:721–729

    Article  CAS  PubMed  Google Scholar 

  • Farago S, Brunold C (1994) Regulation of thiol contents in maize roots by intermediates and effectors of glutathione synthesis. J Plant Physiol 144:433–437

    Article  CAS  Google Scholar 

  • Ferretti M, Destro T, Tosatto SCE, La Rocca N, Rascio N, Masi A (2009) Gamma-glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast. New Phytol 181:115–126

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant Cell Environ 39:951–964

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione-reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, De Paepe R, Noctor G (2004) Roles of mitochondria in redox signalling and oxidative stress. Acta Physiol Plant 26:86–86

    Google Scholar 

  • Fraser JA, Saunders RDC, McLellan LI (2002) Drosophila melanogaster glutamate-cysteine ligase activity is regulated by a modifier subunit with a mechanism of action similar to that of the mammalian form. J Biol Chem 277:1158–1165

    Article  CAS  PubMed  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frendo P, Mathieu C, Van de Sype G, Herouart D, Puppo A (1999) Characterisation of a cDNA encoding gamma-glutamylcysteine synthetase in Medicago truncatula. Free Radic Res 31:S213–S218

    Article  CAS  PubMed  Google Scholar 

  • Galant A, Arkus KAJ, Zubieta C, Cahoon RE, Jez JM (2009) Structural basis for evolution of product diversity in soybean glutathione biosynthesis. Plant Cell 21:3450–3458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Yuan HM, Hu YQ, Li J, Lu YT (2014) Mutation of Arabidopsis CATALASE2 results in hyponastic leaves by changes of auxin levels. Plant Cell Environ 37:175–188

    Article  CAS  PubMed  Google Scholar 

  • García-Giménez JL, Markovic J, Dasi F, Queval G, Schnaubelt D, Foyer CH, Pallardo FV (2013) Nuclear glutathione. BBA-Gen Subjects 1830:3304–3316

    Article  CAS  Google Scholar 

  • Gogos A, Shapiro L (2002) Large conformational changes in the catalytic cycle of glutathione synthase. Structure 10:1669–1676

    Article  CAS  PubMed  Google Scholar 

  • Golan T, Muller-Moule P, Niyogi KK (2006) Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. Plant Cell Environ 29:879–887

    Article  CAS  PubMed  Google Scholar 

  • Gomez LD, Vanacker H, Buchner P, Noctor G, Foyer CH (2004) Intercellular distribution of glutathione synthesis in maize leaves and its response to short-term chilling. Plant Physiol 134:1662–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–515

    Article  CAS  PubMed  Google Scholar 

  • Green RM, Graham M, O’Donovan MR, Chipman JK, Hodges NJ (2006) Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis 21:383–390

    Article  CAS  PubMed  Google Scholar 

  • Gromes R, Hothorn M, Lenherr ED, Rybin V, Scheffzek K, Rausch T (2008) The redox switch of gamma-glutamylcysteine ligase via a reversible monomer-dimer transition is a mechanism unique to plants. Plant J 54:1063–1075

    Article  CAS  PubMed  Google Scholar 

  • Großkinsky DK, Koffler BE, Roitsch T, Maier R, Zechmann B (2012) Compartment-specific antioxidative defense in arabidopsis against virulent and avirulent Pseudomonas syringae. Phytopathology 102:662–673

    Article  PubMed  CAS  Google Scholar 

  • Grzam A, Tennstedt P, Clemens S, Hell R, Meyer AJ (2006) Vacuolar sequestration of glutathione -conjugates outcompetes a possible degradation of the glutathione moiety by phytochelatin synthase. FEBS Letters 580(27):6384–6390

    Google Scholar 

  • Grzam A, Martin MN, Hell R, Meyer AJ (2007) Gamma-Glutamyl transpeptidase GGT4 initiates vacuolar degradation of glutathione S-conjugates in Arabidopsis. FEBS Lett 581:3131–3138

    Article  CAS  PubMed  Google Scholar 

  • Gulyas Z, Boldizsar A, Novak A, Szalai G, Pal M, Galiba G, Kocsy G (2014) Central role of the flowering repressor ZCCT2 in the redox control of freezing tolerance and the initial development of flower primordia in wheat. BMC Plant Biol 14:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta AS, Alscher RG, McCune D (1991) Response of photosynthesis and cellular antioxidants to ozone in populus leaves. Plant Physiol 96:650–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gushima H, Miya T, Murata K, Kimura A (1983) Purification and characterization of glutathione synthetase from Escherichia coli B. J Appl Biochem 5:210–218

    CAS  PubMed  Google Scholar 

  • Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G (2013a) Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 18:2106–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Mhamdi A, Chaouch S, Noctor G (2013b) Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. Plant Cell Environ 36:1135–1146

    Article  CAS  PubMed  Google Scholar 

  • Harms K, von Ballmoos P, Brunold C, Hofgen R, Hesse H (2000) Expression of a bacterial serine acetyltransferase in transgenic potato plants leads to increased levels of cysteine and glutathione. Plant J 22:335–343

    Article  CAS  PubMed  Google Scholar 

  • Hartmann TN, Fricker MD, Rennenberg H, Meyer AJ (2003) Cell-specific measurement of cytosolic glutathione in poplar leaves. Plant Cell Environ 26:965–975

    Article  CAS  PubMed  Google Scholar 

  • Hatano-Iwasaki A, Ogawa K (2012) Overexpression of GSH1 gene mimics transcriptional response to low temperature during seed vernalization treatment of Arabidopsis. Plant Cell Physiol 53:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Hell R, Bergmann L (1988) Glutathione synthetase in tobacco suspension-cultures – catalytic properties and localization. Physiol Plant 72:70–76

    Article  CAS  Google Scholar 

  • Hell R, Bergmann L (1990) Gamma-Glutamylcysteine synthetase in higher-plants – catalytic properties and subcellular-localization. Planta 180:603–612

    Article  CAS  PubMed  Google Scholar 

  • Hernández I, Cela J, Alegre L (2013) Antioxidant defenses against drought stress. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 231–258

    Google Scholar 

  • Herrera K, Cahoon RE, Kumaran S, Jez JM (2007) Reaction mechanism of glutathione synthetase from Arabidopsis thaliana – site-directed mutagenesis of active residues. J Biol Chem 282:17157–17165

    Article  CAS  PubMed  Google Scholar 

  • Heyneke E, Luschin-Ebengreuth N, Krajcer I, Wolkinger V, Muller M, Zechmann B (2013) Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biol 13:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibi T, Nii H, Nakatsu T, Kimura A, Kato H, Hiratake J, Oda J (2004) Crystal structure of gamma-glutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis. Proc Natl Acad Sci U S A 101:15052–15057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks LM, Cahoon RE, Bonner ER, Rivard RS, Sheffield J, Jez JM (2007) Thiol-based regulation of redox-active glutamate-cysteine ligase from Arabidopsis thaliana. Plant Cell 19:2653–2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hothorn M, Wachter A, Gromes R, Stuwe T, Rausch T, Scheffzek K (2006) Structural basis for the redox control of plant glutamate cysteine ligase. J Biol Chem 281:27557–27565

    Article  CAS  PubMed  Google Scholar 

  • Howden R, Andersen CR, Goldsbrough PB, Cobbett CS (1995) A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol 107:1067–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic-reticulum. Science 257:1496–1502

    Article  CAS  PubMed  Google Scholar 

  • Iqbal A, Yabuta Y, Takeda T, Nakano Y, Shigeoka S (2006) Hydroperoxide reduction by thioredoxin-specific glutathione peroxidase isoenzymes of Arabidopsis thaliana. FEBS J 273:5589–5597

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Cahoon RE (2004) Kinetic mechanism of glutathione synthetase from Arabidopsis thaliana. J Biol Chem 279:42726–42731

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Cahoon RE, Chen SX (2004) Arabidopsis thaliana glutamate-cysteine ligase – functional properties, kinetic mechanism, and regulation of activity. J Biol Chem 279:33463–33470

    Article  CAS  PubMed  Google Scholar 

  • Jiménez A, Hernandez JA, delRio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Jubany-Mari T, Alegre-Batlle L, Jiang K, Feldman LJ (2010) Use of a redox-sensing GFP (c-roGFP1) for real-time monitoring of cytosol redox status in Arabidopsis thaliana water-stressed plants. FEBS Lett 584:889–897

    Google Scholar 

  • Kataya AR, Reumann S (2010) Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol. Plant Signal Behav 5:171–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim RH, Smith PD, Aleyasin H, Hayley S, Mount MP, Pownall S, Wakeham A, You-Ten AJ, Kalia SK, Horne P, Westaway D, Lozano AM, Anisman H, Park DS, Mak TW (2005) Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 102:5215–5220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Király L, Kunstler A, Holler K, Fattinger M, Juhasz C, Muller M, Gullner G, Zechmann B (2012) Sulfate supply influences compartment specific glutathione metabolism and confers enhanced resistance to tobacco mosaic virus during a hypersensitive response. Plant Physiol Biochem 59:44–54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klapheck S (1988) Homoglutathione – isolation, quantification and occurrence in legumes. Physiol Plant 74:727–732

    Article  CAS  Google Scholar 

  • Klapheck S, Chrost B, Starke J, Zimmermann H (1992) Gamma-Glutamylcysteinylserine – a new homolog of glutathione in plants of the family Poaceae. Bot Acta 105:174–179

    Article  CAS  Google Scholar 

  • Koffler BE, Bloem E, Zellnig G, Zechmann B (2013) High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis. Micron 45:119–128

    Google Scholar 

  • Kopriva S, Rennenberg H (2004) Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 55:1831–1842

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Grill D (1996) Significance of thiol-disulfide exchange in resting stages of plant development. Bot Acta 109:8–14

    Article  CAS  Google Scholar 

  • Kranner I, Birtic S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radic Biol Med 40:2155–2165

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Datta R, Hazra S, Sultana A, Mukhopadhyay R, Chattopadhyay S (2015) Transcriptomic profiling of Arabidopsis thaliana mutant pad2.1 in response to combined cold and osmotic stress. PLoS One 10:e0122690

    Google Scholar 

  • Kuźniak E, Sklodowska M (2001) Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea. Plant Sci 160:723–731

    Article  PubMed  Google Scholar 

  • Li H, Xu HM, Graham DE, White RH (2003) Glutathione synthetase homologs encode alpha-L-glutamate ligases for methanogenic coenzyme F-420 and tetrahydrosarcinapterin biosyntheses. Proc Natl Acad Sci U S A 100:9785–9790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liedschulte V, Wachter A, An ZG, Rausch T (2010) Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnol J 8:807–820

    Article  CAS  PubMed  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locato V, Uzal EN, Cimini S, Zonno MC, Evidente A, Micera A, Foyer CH, De Gara L (2015) Low concentrations of the toxin ophiobolin A lead to an arrest of the cell cycle and alter the intracellular partitioning of glutathione between the nuclei and cytoplasm. J Exp Bot 66:2991–3000

    Article  CAS  PubMed  Google Scholar 

  • Lu YP, Li ZS, Drozdowicz YM, Hortensteiner S, Martinoia E, Rea PA (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell 10:267–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markovic J, Borras C, Ortega A, Sastre J, Vina J, Pallardo FV (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 282:20416–20424

    Article  CAS  PubMed  Google Scholar 

  • Martin MN, Slovin JP (2000) Purified gamma-glutamyl transpeptidases from tomato exhibit high affinity for glutathione and glutathione S-conjugates. Plant Physiol 122:1417–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) ATP-dependent glutathione s-conjugate export pump in the vacuolar membrane of plants. Nature 364:247–249

    Article  CAS  Google Scholar 

  • Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R (2009) The NAD(P)H-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci USA 106:9109–9114

    Google Scholar 

  • Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Muller C, Salcedo-Sora E, Kruse C, Orsel M, Hell R, Miller AJ, Bray P, Foyer CH, Murray JAH, Meyer AJ, Cobbett CS (2010) Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci U S A 107:2331–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May MJ, Leaver CJ (1993) Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension-cultures. Plant Physiol 103:621–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May MJ, Leaver CJ (1994) Arabidopsis thalianagamma-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia-Coli homologs. Proc Natl Acad Sci U S A 91:10059–10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May MJ, Vernoux T, Sanchez-Fernandez R, Van Montagu M, Inze D (1998) Evidence for posttranscriptional activation of gamma-glutamylcysteine synthetase during plant stress responses. Proc Natl Acad Sci U S A 95:12049–12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    CAS  PubMed  Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  • Meuwly P, Thibault P, Rauser WE (1993) Gamma-Glutamylcysteinylglutamic acid – a new homolog of glutathione in maize seedlings exposed to cadmium. FEBS Lett 336:472–476

    Article  CAS  PubMed  Google Scholar 

  • Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R (2007) Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant J 52:973–986

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G (2010) Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153:1144–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Musgrave WB, Yi H, Kline D, Cameron JC, Wignes J, Dey S, Pakrasi HB, Jez JM (2013) Probing the origins of glutathione biosynthesis through biochemical analysis of glutamate-cysteine ligase and glutathione synthetase from a model photosynthetic prokaryote. Biochem J 450:63–72

    Article  CAS  PubMed  Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Strohm M, Jouanin L, Kunert KJ, Foyer CH, Rennenberg H (1996) Synthesis of glutathione in leaves of transgenic poplar overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 112:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Valadier MH, Roux Y, Foyer CH (1997) The role of glycine in determining the rate of glutathione synthesis in poplar. Possible implications for glutathione production during stress. Physiol Plant 100:255–263

    Article  CAS  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Foyer CH (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118:471–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002a) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53:1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Veljovic-Jovanovic S, Driscoll S, Novitskaya L, Foyer CH (2002b) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Queval G, Foyer CH (2013) Regulating the redox gatekeeper: vacuolar sequestration puts glutathione disulfide in its place. Plant Physiol 163:665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noji M, Saito K (2002) Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulfur metabolic engineering in plants. Amino Acids 22:231–243

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K, Hatano-Iwasaki A, Yanagida M, Iwabuchi M (2004) Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol 45:1–8

    Google Scholar 

  • Paciolla C, Paradiso A, de Pinto MC (2016) Cellular redox homeostasis as central modulator in plant stress response. In: Gupta DK, Palma JM, Corpas FJ (eds) Redox state as a central regulator of plant-cell stress responses. Springer International Publishing, Cham, pp 1–23

    Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2007) Identification of PAD2 as a gamma-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49:159–172

    Article  CAS  PubMed  Google Scholar 

  • Pasternak M, Lim B, Wirtz M, Hell R, Cobbett CS, Meyer AJ (2008) Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. Plant J 53:999–1012

    Article  CAS  PubMed  Google Scholar 

  • Pellny TK, Locato V, Vivancos PD, Markovic J, De Gara L, Pallardo FV, Foyer CH (2009) Pyridine nucleotide cycling and control of intracellular redox state in relation to poly (ADP-ribose) polymerase activity and nuclear localization of glutathione during exponential growth of Arabidopsis cells in culture. Mol Plant 2:442–456

    Article  CAS  PubMed  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex steudel. Plant Physiol 133:829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pospisil P (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. BBA-Bioenergetics 1817:218–231

    Article  CAS  PubMed  Google Scholar 

  • Preuss ML, Cameron JC, Berg RH, Jez JM (2014) Immunolocalization of glutathione biosynthesis enzymes in Arabidopsis thaliana. Plant Physiol Biochem 75:9–13

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakiere B, Vanacker H, Miginiac-Maslow M, Van Breusegem F, Noctor G (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J 52:640–657

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Thominet D, Vanacker H, Miginiac-Maslow M, Gakiere B, Noctor G (2009) H2O2-activated up-regulation of glutathione in arabidopsis involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. Mol Plant 2:344–356

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Jaillard D, Zechmann B, Noctor G (2011) Increased intracellular H2O2 availability preferentially drives glutathione accumulation in vacuoles and chloroplasts. Plant Cell Environ 34:21–32

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Neukermans J, Vanderauwera S, Van Breusegem F, Noctor G (2012) Day length is a key regulator of transcriptomic responses to both CO2 and H2O2 in Arabidopsis. Plant Cell Environ 35:374–387

    Article  CAS  PubMed  Google Scholar 

  • Rahantaniaina MS, Tuzet A, Mhamdi A, Noctor G (2013) Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Front Plant Sci 4:477

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmusson AG, Møller IM (1990) NADP-utilizing enzymes in the matrix of plant-mitochondria. Plant Physiol 94:1012–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlins MR, Leaver CJ, May MJ (1995) Characterization of an Arabidopsis thaliana cDNA-encoding glutathione synthetase. FEBS Lett 376:81–86

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H (1980) Glutathione metabolism and possible biological roles in higher plants. Phytochemistry 21:2771–2781

    Article  Google Scholar 

  • Rennenberg H (1995) Processes involved in glutathione metabolism. In: Wallsgrove RM (ed) Amino acids and their derivatives in higher plants. Cambridge University Press, Cambridge, pp 155–171

    Chapter  Google Scholar 

  • Rennenberg H (2001) Glutathione: an ancient metabolite with modern tasks. In: Grill D, Tausz M, De Kok LJ (eds) Significance of glutathione to plant adaptation to the environment. Kluwer Academic Publisher, New York, Boston, Dordrecht, London, Moscow, pp 1–11

    Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inze D, Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32:329–342

    Article  CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodriguez-Serrano M, del Rio LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N (2010) Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. New Phytol 186:365–372

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Ueda M, Morikawa H (2002) Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Lett 515:20–24

    Article  CAS  PubMed  Google Scholar 

  • Schnaubelt D, Schulz P, Hannah MA, Yocgo RE, Foyer CH (2013) A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana. Front Plant Sci 4:416

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnaubelt D, Queval G, Dong YP, Diaz-Vivancos P, Makgopa ME, Howell G, De Simone A, Bai J, Hannah MA, Foyer CH (2015) Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Plant Cell Environ 38:266–279

    Article  CAS  PubMed  Google Scholar 

  • Schwarzlander M, Finkemeier I (2013) Mitochondrial energy and redox signaling in plants. Antioxid Redox Signal 18:2122–2144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seelig GF, Simondsen RP, Meister A (1984) Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits. J Biol Chem 259:9345–9347

    CAS  PubMed  Google Scholar 

  • Setterdahl AT, Chivers PT, Hirasawa M, Lemaire SD, Keryer E, Miginiac-Maslow M, Kim SK, Mason J, Jacquot JP, Longbine CC, de Lamotte-Guery F, Knaff DB (2003) Effect of pH on the oxidation-reduction properties of thioredoxins. Biochemistry 42:14877–14884

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam V, Tsednee M, Yeh KC (2012) ZINC TOLERANCE INDUCED BY IRON 1 reveals the importance of glutathione in the cross-homeostasis between zinc and iron in Arabidopsis thaliana. Plant J 69:1006–1017

    Article  CAS  PubMed  Google Scholar 

  • Simon UK, Polanschutz LM, Koffler BE, Zechmann B (2013) High resolution imaging of temporal and spatial changes of subcellular ascorbate, glutathione and H2O2 distribution during Botrytis cinerea infection in Arabidopsis. PLoS One 8:e65811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skipsey M, Davis BG, Edwards R (2005) Diversification in substrate usage by glutathione synthetases from soya bean (Glycine max), wheat (Triticum aestivum) and maize (Zea mays). Biochem J 391:567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith IK, Kendall AC, Keys AJ, Turner JC, Lea PJ (1984) Increased levels of glutathione in a catalase-deficient mutant of barley (Hordeum vulgare L.) Plant Sci Lett 37:29–33

    Article  CAS  Google Scholar 

  • Smith IK, Vierheller TL, Thorne CA (1989) Properties and functions of glutathione-reductase in plants. Physiol Plant 77:449–456

    Article  CAS  Google Scholar 

  • Steinkamp R, Rennenberg H (1985) Degradation of glutathione in plant-cells – evidence against the participation of a gamma-glutamyltranspeptidase. Zeitschrift Fur Naturforschung C 40:29–33

    Google Scholar 

  • Stevens RG, Creissen GP, Mullineaux PM (2000) Characterisation of pea cytosolic glutathione reductase expressed in transgenic tobacco. Planta 211:537–545

    Article  CAS  PubMed  Google Scholar 

  • Storozhenko S, Belles-Boix E, Babiychuk E, Herouart D, Davey MW, Slooten L, Van Montagu M, Inze D, Kushnir S (2002) Gamma-glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties. Plant Physiol 128:1109–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strohm M, Jouanin L, Kunert KJ, Pruvost C, Polle A, Foyer CH, Rennenberg H (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula X P. alba) overexpressing glutathione synthetase. Plant J 7:141–145

    Article  CAS  Google Scholar 

  • Sung DY, Kim TH, Komives EA, Mendoza-Cozatl DG, Schroeder JI (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J 59:802–812

    Google Scholar 

  • Tarrago L, Laugier E, Zaffagnini M, Marchand C, Le Marechal P, Rouhier N, Lemaire SD, Rey P (2009) Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins. J Biol Chem 284:18963–18971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolin S, Arrigoni G, Trentin AR, Veljovic-Jovanovic S, Pivato M, Zechman B, Masi A (2013) Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant’s adaptation to environment. Proteomics 13:2031–2045

    Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ullmann P, Gondet L, Potier S, Bach TJ (1996) Cloning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutant. Eur J Biochem 236:662–669

    Article  CAS  PubMed  Google Scholar 

  • Van Belleghem F, Cuypers A, Semane B, Smeets K, Vangronsveld J, d’Haen J, Valcke R (2007) Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol 173:495–508

    Article  PubMed  CAS  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    Article  CAS  PubMed  Google Scholar 

  • Wagner U, Edwards R, Dixon DP, Mauch F (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49:515–532

    Google Scholar 

  • Wang W, Ballatori N (1998) Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol Rev 50:335–355

    CAS  PubMed  Google Scholar 

  • Wang CL, Oliver DJ (1997) Glutathione synthetase: similarities of the proteins from Schizosaccharomyces pombe and Arabidopsis thaliana. Biochem J 326:563–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, VanMontagu M, Inze D, VanCamp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J 16:4806–4816

    Google Scholar 

  • Wirtz M, Hell R (2007) Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. Plant Cell 19:625–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf AE, Dietz KJ, Schroder P (1996) Degradation of glutathione S-conjugates by a carboxypeptidase in the plant vacuole. FEBS Lett 384:31–34

    Article  CAS  PubMed  Google Scholar 

  • Wonisch W, Schaur RJ (2001) Chemistry of glutathione. In: Grill D, Tausz M, De Kok LJ (eds) Significance of glutathione to plant adaptation to the environment. Kluwer Academic Publisher, New York, Boston, Dordrecht, London, Moscow, pp 13–26

    Chapter  Google Scholar 

  • Wu JM, Qu T, Chen SY, Zhao ZG, An LZ (2009) Molecular cloning and characterization of a gamma-glutamylcysteine synthetase gene from Chorispora bungeana. Protoplasma 235:27–36

    Article  CAS  PubMed  Google Scholar 

  • Xiang CB, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang CB, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Kato H, Hata Y, Nishioka T, Kimura A, Oda J, Katsube Y (1993) Three-dimensional structure of the glutathione synthetase from Escherichia coli B at 2.0 A resolution. J Mol Biol 229:1083–1100

    Google Scholar 

  • Zechmann B (2014) Compartment-specific importance of glutathione during abiotic and biotic stress. Front Plant Sci 5:566

    Article  PubMed  PubMed Central  Google Scholar 

  • Zechmann B, Muller M (2010) Subcellular compartmentation of glutathione in dicotyledonous plants. Protoplasma 246:15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechmann B, Russell SD (2011) Subcellular distribution of glutathione in the gametophyte. Plant Signal Behav 6:1259–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechmann B, Mauch F, Sticher L, Muller M (2008) Subcellular immunocytochemical analysis detects the highest concentrations of glutathione in mitochondria and not in plastids. J Exp Bot 59:4017–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechmann B, Koffler BE, Russell SD (2011) Glutathione synthesis is essential for pollen germination in vitro. BMC Plant Biol 11:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Concetta de Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sabetta, W., Paradiso, A., Paciolla, C., de Pinto, M.C. (2017). Chemistry, Biosynthesis, and Antioxidative Function of Glutathione in Plants. In: Hossain, M., Mostofa, M., Diaz-Vivancos, P., Burritt, D., Fujita, M., Tran, LS. (eds) Glutathione in Plant Growth, Development, and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-66682-2_1

Download citation

Publish with us

Policies and ethics