Bone-Marrow-Derived Cell Therapies in Stroke: Immunomodulatory Effects

  • Laith Maali
  • David C. HessEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Cell therapies have attracted significant attention in treating multiple neurological disorders including stroke. The preclinical studies have paved the road in understanding the potential clinical applications of cell therapies in stroke recovery. Cells can be obtained from multiple sources and transplanted through different routes. Animal and human studies suggest that cell therapies exert their effect via paracrine and immunomodulatory effects rather than physically replacing the damaged cells. Clinical studies are still in the early phases but show safety and feasibility and some hints at efficacy.


Cell therapies Stem cells Bone marrow derived Mesenchymal stem cells Multipotent adult progenitor cells Stroke Phase 2 clinical trial Immune modulation Immunomodulation Neuroprotection MultiStem 



Adrenocorticotropic hormone


Antigen presenting cells


Danger-associated molecular pattern molecules


gamma-Aminobutyric acid








IFN-γ-inducible protein




Multipotent adult progenitor cells


Monocyte chemoattractant protein


Major histocompatibility complex


Macrophage inflammatory protein




Matrix metalloproteinases


Mononuclear cells


Mesenchymal stem cells


National Institute of Health Stroke Scale


Regulated on activation normal T cell expressed and secreted


Ribonucleic acid


Recombinant tissue plasminogen activator


Severe combined immunodeficiency


Toll-like receptors


Tumor necrosis factor


  1. 1.
    Johnston SC, Mendis S, Mathers CD. Global variation in stroke burden and mortality: estimates from monitoring, surveillance, and modelling. Lancet Neurol. 2009;8(4):345–54.PubMedCrossRefGoogle Scholar
  2. 2.
    Ansari S, Rahman M, Waters MF, Hoh BL, Mocco J. Recanalization therapy for acute ischemic stroke, part 1: surgical embolectomy and chemical thrombolysis. Neurosurg Rev. 2011;34(1):1–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Goyal M, Menon BK, Van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387(10029):1723–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Kriek E, Qi J, et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med. 1992;327(22):1549–55.PubMedCrossRefGoogle Scholar
  5. 5.
    Chopp M, Zhang XH, Li Y, Wang L, Chen J, Lu D, et al. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport. 2000;11(13):3001–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Mahmood A, Lu D, Li Y, Chen JL, Chopp M. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg. 2001;94(4):589–95.PubMedCrossRefGoogle Scholar
  7. 7.
    Wang J, Yu L, Jiang C, Chen M, Ou C, Wang J. Bone marrow mononuclear cells exert long-term neuroprotection in a rat model of ischemic stroke by promoting arteriogenesis and angiogenesis. Brain Behav Immun. 2013;34:56–66.PubMedCrossRefGoogle Scholar
  8. 8.
    Franco EC, Cardoso MM, Gouvêia A, Pereira A, Gomes-Leal W. Modulation of microglial activation enhances neuroprotection and functional recovery derived from bone marrow mononuclear cell transplantation after cortical ischemia. Neurosci Res. 2012;73(2):122–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Brenneman M, Sharma S, Harting M, Strong R, Cox CS Jr, Aronowski J, et al. Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. J Cereb Blood Flow Metab. 2010;30(1):140–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Eckert MA, Vu Q, Xie K, Yu J, Liao W, Cramer SC, et al. Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J Cereb Blood Flow Metab. 2013;33(9):1322–34.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Yang B, Hamilton J, Strong R, Xi X, Mays R, Savitz S. Human multipotential bone marrow stem cells exert immunomodulatory effects, prevent splenic contraction, and enhance functional recovery in a rodent model of ischemic stroke. In:Stroke. Philadelphia, PA: Lippincott Williams & Wilkins; 2011. p. E67.Google Scholar
  12. 12.
    Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002;1(2):92–100.PubMedCrossRefGoogle Scholar
  13. 13.
    Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol. 2006;198(1):54–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Baker AH, Sica V, Work LM, Williams-Ignarro S, De Nigris F, Lerman LO, et al. Brain protection using autologous bone marrow cell, metalloproteinase inhibitors, and metabolic treatment in cerebral ischemia. Proc Natl Acad Sci U S A. 2007;104(9):3597–602.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Savitz SI, Misra V, Kasam M, Juneja H, Cox CS, Alderman S, et al. Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol. 2011;70(1):59–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Moniche F, Gonzalez A, Gonzalez-Marcos J-R, Carmona M, Piñero P, Espigado I, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke. Stroke. 2012;43(8):2242–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Prasad K, Mohanty S, Bhatia R, Srivastava MVP, Garg A, Srivastava A, et al. Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke: a pilot study. Indian J Med Res. 2012;136(2):221.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(Pt 6):1790–807.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    William TT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75(3):389–97.CrossRefGoogle Scholar
  20. 20.
    Bhasin A, Srivastava MP, Mohanty S, Bhatia R, Kumaran SS, Bose S. Stem cell therapy: a clinical trial of stroke. Clin Neurol Neurosurg. 2013;115(7):1003–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Li Y, McIntosh K, Chen J, Zhang C, Gao Q, Borneman J, et al. Allogeneic bone marrow stromal cells promote glial–axonal remodeling without immunologic sensitization after stroke in rats. Exp Neurol. 2006;198(2):313–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Kovacsovics-Bankowski M, Streeter PR, Mauch KA, Frey MR, Raber A, van’t Hof W, et al. Clinical scale expanded adult pluripotent stem cells prevent graft-versus-host disease. Cell Immunol. 2009;255(1):55–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Boozer S, Lehman N, Lakshmipathy U, Love B, Raber A, Maitra A, et al. Global characterization and genomic stability of human multiStem, a multipotent adult progenitor cell. J Stem Cells. 2008;4(1):17–28.Google Scholar
  24. 24.
    Mays RW, Borlongan CV, Yasuhara T, Hara K, Maki M, Carroll JE, et al. Development of an allogeneic adherent stem cell therapy for treatment of ischemic stroke. J Exp Stroke Transl Med. 2010;3(1):34–46.CrossRefGoogle Scholar
  25. 25.
    Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16(5):360–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Eglitis MA, Dawson D, Park K-W, Mouradian MM. Targeting of marrow-derived astrocytes to the ischemic brain. Neuroreport. 1999;10(6):1289–92.PubMedCrossRefGoogle Scholar
  27. 27.
    Hillyer C. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow: E. Mezey, KJ Chandross, G. Garta, et al. Science 290:1779–1782, 2000. Transfus Med Rev. 2001;15(3):248–9.Google Scholar
  28. 28.
    Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury. Neurosci Lett. 2009;456(3):120–3.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57(6):874–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Grieve SM, Bhindi R, Seow J, Doyle A, Turner AJ, Tomka J, et al. Microvascular obstruction by intracoronary delivery of mesenchymal stem cells and quantification of resulting myocardial infarction by cardiac magnetic resonance. Circ Heart Fail. 2010;3(3):e5–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res. 2003;73(3):296–307.PubMedCrossRefGoogle Scholar
  32. 32.
    Janowski M, Lyczek A, Engels C, Xu J, Lukomska B, Bulte JW, et al. Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation. J Cereb Blood Flow Metab. 2013;33(6):921–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kalladka D, Sinden J, Pollock K, Haig C, McLean J, Smith W, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. Lancet. 2016;388(10046):787–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Stroemer P, Patel S, Hope A, Oliveira C, Pollock K, Sinden J. The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil Neural Repair. 2009;23(9):895–909.PubMedCrossRefGoogle Scholar
  35. 35.
    Yang B, Migliati E, Parsha K, Schaar K, Xi X, Aronowski J, et al. Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke. Stroke. 2013;44(12):3463–72.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Audebert HJ, Rott MM, Eck T, Haberl RL. Systemic inflammatory response depends on initial stroke severity but is attenuated by successful thrombolysis. Stroke. 2004;35(9):2128–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Prass K, Meisel C, Höflich C, Braun J, Halle E, Wolf T, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med. 2003;198(5):725–36.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005;6(10):775–86.PubMedCrossRefGoogle Scholar
  39. 39.
    Peerschke EI, Yin W, Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol. 2010;47(13):2170–5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Pinsky DJ, Naka Y, Liao H, Oz MC, Wagner DD, Mayadas TN, et al. Hypoxia-induced exocytosis of endothelial cell Weibel-Palade bodies. A mechanism for rapid neutrophil recruitment after cardiac preservation. J Clin Invest. 1996;97(2):493.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 2008;8(4):279.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Benakis C, Garcia-Bonilla L, Iadecola C, Anrather J. The role of microglia and myeloid immune cells in acute cerebral ischemia. Front Cell Neurosci [Internet]. 2014;8. Available from:
  43. 43.
    Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP. Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience. 2009;158(3):1007–20.PubMedCrossRefGoogle Scholar
  44. 44.
    Benakis C, Garcia-Bonilla L, Iadecola C, Anrather J. The role of microglia and myeloid immune cells in acute cerebral ischemia. Front Cell Neurosci. 2014;8:461.PubMedGoogle Scholar
  45. 45.
    Konsman JP, Drukarch B, Van Dam A-M. (Peri)vascular production and action of pro-inflammatory cytokines in brain pathology. Clin Sci. 2007;112(1):1–25.PubMedCrossRefGoogle Scholar
  46. 46.
    Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke. Neurol Res. 2008;30(8):783–93.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Justicia C, Panés J, Solé S, Cervera Á, Deulofeu R, Chamorro Á, et al. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab. 2003;23(12):1430–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Ak A. Basic immunology updated edition: functions and disorders of the immune system. Philadelphia, PA: Saunders; 2010.Google Scholar
  49. 49.
    Yilmaz A, Fuchs T, Dietel B, Altendorf R, Cicha I, Stumpf C, et al. Transient decrease in circulating dendritic cell precursors after acute stroke: potential recruitment into the brain. Clin Sci. 2009;118(2):147–57.PubMedCrossRefGoogle Scholar
  50. 50.
    Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe C-U, Siler DA, et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40(5):1849–57.PubMedCrossRefGoogle Scholar
  51. 51.
    Bornstein NM, Aronovich B, Korczyn AD, Shavit S, Michaelson DM, Chapman J. Antibodies to brain antigens following stroke. Neurology. 2001;56(4):529–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med. 2009;15(2):192–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, et al. Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood. 2010;115(18):3835–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, et al. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol. 2006;176(11):6523–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation. 2006;113(17):2105–12.PubMedCrossRefGoogle Scholar
  56. 56.
    Kleinschnitz C, Kraft P, Dreykluft A, Hagedorn I, Göbel K, Schuhmann MK, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121(4):679–91.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26(5):654–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Emsley HC, Smith CJ, Gavin CM, Georgiou RF, Vail A, Barberan EM, et al. An early and sustained peripheral inflammatory response in acute ischaemic stroke: relationships with infection and atherosclerosis. J Neuroimmunol. 2003;139(1):93–101.PubMedCrossRefGoogle Scholar
  59. 59.
    Ajmo CT, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, et al. The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res. 2008;86(10):2227–34.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hamidon BB, Raymond AA, Norlinah MI, Jefferelli SB. The predictors of early infection after an acute ischaemic stroke. Singap Med J. 2003;44(7):344–6.Google Scholar
  61. 61.
    Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev. 1999;79(1):1–71.PubMedGoogle Scholar
  62. 62.
    Tuosto L, Cundari E, Montani MSG, Piccolella E. Analysis of susceptibility of mature human T lymphocytes to dexamethasone-induced apoptosis. Eur J Immunol. 1994;24(5):1061–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, et al. Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci U S A. 2008;105(38):14638–43.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, et al. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216(1):47–55.PubMedCrossRefGoogle Scholar
  65. 65.
    Bao X, Feng M, Wei J, Han Q, Zhao H, Li G, et al. Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats. Eur J Neurosci. 2011;34(1):87–98.PubMedCrossRefGoogle Scholar
  66. 66.
    Schwarting S, Litwak S, Hao W, Bähr M, Weise J, Neumann H. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke. 2008;39(10):2867–75.PubMedCrossRefGoogle Scholar
  67. 67.
    Lu P, Jones LL, Snyder EY, Tuszynski MH. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol. 2003;181(2):115–29.PubMedCrossRefGoogle Scholar
  68. 68.
    Nguyen N, Lee SB, Lee YS, Lee K-H, Ahn J-Y. Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through Trk receptors, activating PI3-kinase and MAPK pathways. Neurochem Res. 2009;34(5):942–51.PubMedCrossRefGoogle Scholar
  69. 69.
    Roitbak T, Li L, Cunningham LA. Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1α-regulated VEGF signaling. J Cereb Blood Flow Metab. 2008;28(9):1530–42.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73(6):778–86.PubMedCrossRefGoogle Scholar
  71. 71.
    Steffenhagen C, Dechant F-X, Oberbauer E, Furtner T, Weidner N, Küry P, et al. Mesenchymal stem cells prime proliferating adult neural progenitors toward an oligodendrocyte fate. Stem Cells Dev. 2011;21(11):1838–51.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Mauri M, Lentini D, Gravati M, Foudah D, Biella G, Costa B, et al. Mesenchymal stem cells enhance GABAergic transmission in co-cultured hippocampal neurons. Mol Cell Neurosci. 2012;49(4):395–405.PubMedCrossRefGoogle Scholar
  73. 73.
    Ribeiro CA, Salgado AJ, Fraga JS, Silva NA, Reis RL, Sousa N. The secretome of bone marrow mesenchymal stem cells-conditioned media varies with time and drives a distinct effect on mature neurons and glial cells (primary cultures). J Tissue Eng Regen Med. 2011;5(8):668–72.PubMedCrossRefGoogle Scholar
  74. 74.
    Bacigaluppi M, Pluchino S, Jametti LP, Kilic E, Kilic Ü, Salani G, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;awp174.Google Scholar
  75. 75.
    Yoo S-W, Chang D-Y, Lee H-S, Kim G-H, Park J-S, Ryu B-Y, et al. Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β. Neurobiol Dis. 2013;58:249–57.PubMedCrossRefGoogle Scholar
  76. 76.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43.PubMedCrossRefGoogle Scholar
  77. 77.
    Nasef A, Mathieu N, Chapel A, Frick J, François S, Mazurier C, et al. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation. 2007;84(2):231–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood. 2004;103(12):4619–21.PubMedCrossRefGoogle Scholar
  79. 79.
    Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.PubMedCrossRefGoogle Scholar
  80. 80.
    Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood. 2006;107(1):367–72.PubMedCrossRefGoogle Scholar
  81. 81.
    Mei SH, Haitsma JJ, Dos Santos CC, Deng Y, Lai PF, Slutsky AS, et al. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med. 2010;182(8):1047–57.PubMedCrossRefGoogle Scholar
  82. 82.
    Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711–5.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Camussi G, Deregibus MC, Cantaluppi V. Role of stem-cell-derived microvesicles in the paracrine action of stem cells. Biochem Soc Trans. 2013;41(1):283–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Lai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med. 2011;6(4):481–92.PubMedCrossRefGoogle Scholar
  85. 85.
    Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One. 2010;5(7):e11803.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Xin H, Li Y, Chopp M. Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci. 2014;8:377.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Yeo RWY, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013;65(3):336–41.PubMedCrossRefGoogle Scholar
  88. 88.
    Shen B, Wu N, Yang J-M, Gould SJ. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem. 2011;286(16):14383–95.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Yang J-M, Gould SJ. The cis-acting signals that target proteins to exosomes and microvesicles. Biochem Soc Trans. 2013;41(1):277–82.PubMedCrossRefGoogle Scholar
  90. 90.
    Koh W, Sheng CT, Tan B, Lee QY, Kuznetsov V, Kiang LS, et al. Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of hepatic nuclear factor 4 alpha. BMC Genomics. 2010;11(1):S6.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Tomasoni S, Longaretti L, Rota C, Morigi M, Conti S, Gotti E, et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 2012;22(5):772–80.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Greenwalt TJ. The how and why of exocytic vesicles. Transfusion (Paris). 2006;46(1):143–52.CrossRefGoogle Scholar
  93. 93.
    Horstman LL, Jy W, Minagar A, Bidot CJ, Jimenez JJ, Alexander JS, et al. Cell-derived microparticles and exosomes in neuroinflammatory disorders. Int Rev Neurobiol. 2007;79:227–68.PubMedCrossRefGoogle Scholar
  94. 94.
    Sano S, Izumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, et al. Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem Biophys Res Commun. 2014;445(2):327–33.PubMedCrossRefGoogle Scholar
  95. 95.
    Chen J, Ning R, Zacharek A, Cui C, Cui X, Yan T, et al. MiR-126 contributes to human umbilical cord blood cell-induced neurorestorative effects after stroke in Type-2 diabetic mice. Stem Cells. 2016;34(1):102–13.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Fiore R, Siegel G, Schratt G. MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta BBA Gene Regul Mech. 2008;1779(8):471–8.CrossRefGoogle Scholar
  97. 97.
    Zhang B, Wang Q, Pan X. MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol. 2007;210(2):279–89.PubMedCrossRefGoogle Scholar
  98. 98.
    Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012;30(7):1556–64.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Lee J-K, Park S-R, Jung B-K, Jeon Y-K, Lee Y-S, Kim M-K, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 2013;8(12):e84256.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lusardi TA, Murphy SJ, Phillips JI, Chen Y, Davis CM, Young JM, et al. MicroRNA responses to focal cerebral ischemia in male and female mouse brain. Front Mol Neurosci. 2014;7:11.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PTH, et al. microRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS One. 2013;8(6):e66393.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Xin H, Katakowski M, Wang F, Qian J-Y, Liu XS, Ali MM, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke. 2017;48(3):747–53.PubMedCrossRefGoogle Scholar
  103. 103.
    Friedrich MA, Martins MP, Araújo MD, Klamt C, Vedolin L, Garicochea B, et al. Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant. 2012;21(1):S13–21.PubMedCrossRefGoogle Scholar
  104. 104.
    Bhasin A, Srivastava MV, Bhatia R, Mohanty S, Kumaran SS, Bose S. Autologous intravenous mononuclear stem cell therapy in chronic ischemic stroke. J Stem Cells Regen Med. 2012;8(3):181.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–106.PubMedCrossRefGoogle Scholar
  106. 106.
    Yang B, Schaar K, Hamilton J, Xi X, Mays R, Savitz SI. Abstract 198: The spleen is a pivotal target of functional recovery after treatment with multistem for acute ischemic stroke. Stroke. 2012;43(Suppl 1):A198.Google Scholar
  107. 107.
    Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, et al. Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke. 2016;47(7):1817–24.PubMedCrossRefGoogle Scholar
  108. 108.
    Reynolds BA, et al. Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke. 2009;40(2):510–5.CrossRefGoogle Scholar
  109. 109.
    Savitz SI, Chopp M, Deans R, Carmichael ST, Phinney D, Wechsler L, et al. Stem Cell Therapy as an Emerging Paradigm for Stroke (STEPS) II. Stroke. 2011;42(3):825–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Savitz SI, Cramer SC, Wechsler L. Stem cells as an emerging paradigm in stroke 3. Stroke. 2014;45(2):634–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Neurology, Medical College of GeorgiaAugusta UniversityAugustaUSA

Personalised recommendations