Modulation of Post-Stroke Plasticity and Regeneration by Stem Cell Therapy and Exogenic Factors

  • Lukas Andereggen
  • Raluca Reitmeir
  • Stefano Di Santo
  • Raphael Guzman
  • Hans R. Widmer
  • Serge Marbacher
  • Robert H. AndresEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Revascularization therapy in the acute post-stroke phase nowadays is reducing the grade of disability and mortality after cerebral ischemia. Post-acute to chronic therapeutic strategies in the phase of irreversible brain parenchyma damage showed until now controversial results in pre-clinical studies: currently there are no effective treatment strategies apart from neurological rehabilitation aiming at restoration of functional post-ischemic deficits.

Spontaneous functional recovery appears immediately after stroke and was proven to correlate with the endogenous regeneration potential represented by rewiring of neuronal circuits through promotion of dendritic and axonal sprouting, improving axonal function, synaptogenesis, neurogenesis, and angiogenesis. These observations have led to numerous preclinical studies investigating a new therapeutic direction after stroke, the neurovascular restoration impacting stroke recovery potential.

This chapter summarizes achievements to date, current challenges and ongoing research in the field of regenerative processes after ischemic stroke, focusing on the formation of functional anatomical pathways responsible for enhanced recovery.


Stroke Regeneration Plasticity Repair Stem cells Neural progenitors Neurogenesis Neuroprotection Endothelial progenitors Trophic factors 



Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid




Adipose-tissue stem cell


Blood-brain barrier


Brain-derived neurotrophic factor


Bone-marrow derived stem cell




C-C chemokine ligand 2


C-C chemokine receptor type 2


Conditioned medium


Central nervous system




Endothelial cell


Endothelial progenitor cell




Extracellular signal-regulated kinase


Embryonic stem cell


Gamma aminobutyric acid


Glial fibrillary acidic protein


Hypoxia-inducible factor-1


Human nuclear antigen




Long term depression


Long term potentiation


Lateral ventricle


Mitogen activated protein kinase


Matrix metalloproteinase




Neural progenitor cell


Nitric oxide


Neural stem cell


Phosphoinositide 3-kinase


Roundabout protein


Standard error of the mean


Subgranular zone


Spike timing depending plasticity


Subventricular zone






Neuron-specific class III beta-tubulin


Umbilical cord blood stem cell


Vascular cell adhesion molecule 1


Vascular endothelial growth factor


Very large antigen-4




Ionic zinc



This research was funded by the Swiss National Science Foundation (Grants No. 31-064975.01, 31-050824, 31-102075/1, 3100A0-112529, 31003A-135565, 406340-128124, 146632, PBBEB-117034, PASMP3-123221/1, PBBEB-146099 and PBBEB-155299), the Swiss Parkinson Foundation, the HANELA Foundation, a Research Grant from the University Hospital Berne, Inselspital (RGI-84800855), the Evelyn L. Neizer Fund, and by the Department of Clinical Research at the University of Berne.


  1. 1.
    von Constantin M. (1853-1930), neurobiologic philosopher. JAMA. 1970;211(6):1003–4.CrossRefGoogle Scholar
  2. 2.
    Pribram KH, Spinelli DN, Reitz SL. The effects of radical disconnexion of occipital and temporal cortex on visual behaviour of monkeys. Brain. 1969;92(2):301–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Seshadri S, Wolf PA. Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. Lancet Neurol. 2007;6(12):1106–14.PubMedCrossRefGoogle Scholar
  4. 4.
    Payne BR, Lomber SG. Reconstructing functional systems after lesions of cerebral cortex. Nat Rev Neurosci. 2001;2(12):911–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Carmichael ST. Plasticity of cortical projections after stroke. Neuroscientist. 2003;9(1):64–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Carmichael ST, Wei L, Rovainen CM, Woolsey TA. New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis. 2001;8(5):910–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Rossini PM, Calautti C, Pauri F, Baron JC. Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2003;2(8):493–502.PubMedCrossRefGoogle Scholar
  8. 8.
    Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A. 2001;98(8):4710–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.PubMedCrossRefGoogle Scholar
  10. 10.
    Lo EHA. new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14(5):497–500.PubMedCrossRefGoogle Scholar
  11. 11.
    Busch HJ, Buschmann IR, Mies G, Bode C, Hossmann KA. Arteriogenesis in hypoperfused rat brain. J Cereb Blood Flow Metab. 2003;23(5):621–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Cramer SC, Chopp M. Recovery recapitulates ontogeny. Trends Neurosci. 2000;23(6):265–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Balami JS, Sutherland BA, Edmunds LD, Grunwald IQ, Neuhaus AA, Hadley G, et al. A systematic review and meta-analysis of randomized controlled trials of endovascular thrombectomy compared with best medical treatment for acute ischemic stroke. Int J Stroke. 2015;10(8):1168–78.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ginsberg MD, Pulsinelli WA. The ischemic penumbra, injury thresholds, and the therapeutic window for acute stroke. Ann Neurol. 1994;36(4):553–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Wahlgren NG, Ahmed N. Neuroprotection in cerebral ischaemia: facts and fancies--the need for new approaches. Cerebrovasc Dis. 2004;17(Suppl 1):153–66.PubMedGoogle Scholar
  17. 17.
    Repici M, Mariani J, Borsello T. Neuronal death and neuroprotection: a review. Methods Mol Biol. 2007;399:1–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Ferrer I. Apoptosis: future targets for neuroprotective strategies. Cerebrovasc Dis. 2006;21(Suppl 2):9–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Gill R, Andine P, Hillered L, Persson L, Hagberg H. The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischaemia in the rat. J Cereb Blood Flow Metab. 1992;12(3):371–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Iijima T, Mies G, Hossmann KA. Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury. J Cereb Blood Flow Metab. 1992;12(5):727–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Griesdale DE, Honey CR. Aquaporins and brain edema. Surg Neurol. 2004;61(5):418–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Hirt L, Ternon B, Price M, Mastour N, Brunet JF, Badaut J. Protective role of early aquaporin 4 induction against postischemic edema formation. J Cereb Blood Flow Metab. 2009;29(2):423–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, et al. Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis. 2008;25(3):268–78.PubMedCrossRefGoogle Scholar
  24. 24.
    Stroemer RP, Rothwell NJ. Cortical protection by localized striatal injection of IL-1ra following cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1997;17(6):597–604.PubMedCrossRefGoogle Scholar
  25. 25.
    Savitz SI, Fisher M. NXY-059 for the treatment of stroke. N Engl J Med. 2007;357(21):2198. author reply -9.PubMedCrossRefGoogle Scholar
  26. 26.
    Savitz SI. A critical appraisal of the NXY-059 neuroprotection studies for acute stroke: a need for more rigorous testing of neuroprotective agents in animal models of stroke. Exp Neurol. 2007;205(1):20–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science. 1999;286(5439):548–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999;2(3):260–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25(9):1794–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264(5162):1145–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Clark SG, Chiu C. C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation. Development. 2003;130(16):3781–94.PubMedCrossRefGoogle Scholar
  33. 33.
    Pleasure SJ, Collins AE, Lowenstein DH. Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development. J Neurosci. 2000;20(16):6095–105.PubMedGoogle Scholar
  34. 34.
    Gage R. How Old Brains Got New Neurons. Cell. 2016;167(4):875–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol. 1998;36(2):249–66.PubMedCrossRefGoogle Scholar
  36. 36.
    Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci. 2002;22(3):629–34.PubMedGoogle Scholar
  37. 37.
    Gritti A, Bonfanti L, Doetsch F, Caille I, Alvarez-Buylla A, Lim DA, et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci. 2002;22(2):437–45.PubMedGoogle Scholar
  38. 38.
    Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ. Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab. 2007;27(6):1213–24.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, Zhang L, et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab. 2004;24(4):441–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang L, Zhang ZG, Zhang RL, Lu M, Adams J, Elliott PJ, et al. Postischemic (6-Hour) treatment with recombinant human tissue plasminogen activator and proteasome inhibitor PS-519 reduces infarction in a rat model of embolic focal cerebral ischemia. Stroke. 2001;32(12):2926–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Dempsey RJ, Sailor KA, Bowen KK, Tureyen K, Vemuganti R. Stroke-induced progenitor cell proliferation in adult spontaneously hypertensive rat brain: effect of exogenous IGF-1 and GDNF. J Neurochem. 2003;87(3):586–97.PubMedCrossRefGoogle Scholar
  42. 42.
    Zhu Y, Sun Y, Xie L, Jin K, Sheibani N, Greenberg DA. Hypoxic induction of endoglin via mitogen-activated protein kinases in mouse brain microvascular endothelial cells. Stroke. 2003;34(10):2483–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Iwai M, Sato K, Omori N, Nagano I, Manabe Y, Shoji M, et al. Three steps of neural stem cells development in gerbil dentate gyrus after transient ischemia. J Cereb Blood Flow Metab. 2002;22(4):411–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Tsai TH, CH L, Wallace CG, Chang WN, Chen SF, Huang CR, et al. Erythropoietin improves long-term neurological outcome in acute ischemic stroke patients: a randomized, prospective, placebo-controlled clinical trial. Crit Care. 2015;19:49.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci. 2006;26(4):1269–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang Y, Jin K, Mao XO, Xie L, Banwait S, Marti HH, et al. VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J Neurosci Res. 2007;85(4):740–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739–47.PubMedCrossRefGoogle Scholar
  48. 48.
    Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12(4):441–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang L, Zhang ZG, Zhang RL, Gregg SR, Hozeska-Solgot A, LeTourneau Y, et al. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci. 2006;26(22):5996–6003.PubMedCrossRefGoogle Scholar
  51. 51.
    Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.PubMedCrossRefGoogle Scholar
  52. 52.
    Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Hermann DM, Zechariah A. Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J Cereb Blood Flow Metab. 2009;29(10):1620–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Carmeliet P. Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet. 2003;4(9):710–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F, Marklund SL, et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet. 2003;34(4):383–94.PubMedCrossRefGoogle Scholar
  56. 56.
    Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17(10):611–25.PubMedCrossRefGoogle Scholar
  57. 57.
    Seylaz J, Charbonne R, Nanri K, Von Euw D, Borredon J, Kacem K, et al. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy. J Cereb Blood Flow Metab. 1999;19(8):863–70.PubMedCrossRefGoogle Scholar
  58. 58.
    Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol. 2000;156(3):965–76.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106(7):829–38.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Stanfield BB, O’Leary DD, Fricks C. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature. 1982;298(5872):371–3.PubMedCrossRefGoogle Scholar
  61. 61.
    Stanfield BB, O’Leary DD. Fetal occipital cortical neurones transplanted to the rostral cortex can extend and maintain a pyramidal tract axon. Nature. 1985;313(5998):135–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Stanfield BB. The development of the corticospinal projection. Prog Neurobiol. 1992;38(2):169–202.PubMedCrossRefGoogle Scholar
  63. 63.
    Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5):735–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Mohajerani MH, Aminoltejari K, Murphy TH. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci U S A. 2011;108(22):E183–91.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24(5):1245–54.PubMedCrossRefGoogle Scholar
  66. 66.
    Papadopoulos CM, Tsai SY, Alsbiei T, O’Brien TE, Schwab ME, Kartje GL. Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and IN-1 antibody treatment in the adult rat. Ann Neurol. 2002;51(4):433–41.PubMedCrossRefGoogle Scholar
  67. 67.
    Seymour AB, Andrews EM, Tsai SY, Markus TM, Bollnow MR, Brenneman MM, et al. Delayed treatment with monoclonal antibody IN-1 1 week after stroke results in recovery of function and corticorubral plasticity in adult rats. J Cereb Blood Flow Metab. 2005;25(10):1366–75.PubMedCrossRefGoogle Scholar
  68. 68.
    Buchli AD, Schwab ME. Inhibition of Nogo: a key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system. Ann Med. 2005;37(8):556–67.PubMedCrossRefGoogle Scholar
  69. 69.
    Ding G, Jiang Q, Li L, Zhang L, Zhang ZG, Ledbetter KA, et al. Angiogenesis detected after embolic stroke in rat brain using magnetic resonance T2*WI. Stroke. 2008;39(5):1563–8.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wiessner C, Bareyre FM, Allegrini PR, Mir AK, Frentzel S, Zurini M, et al. Anti-Nogo-A antibody infusion 24 hours after experimental stroke improved behavioral outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats. J Cereb Blood Flow Metab. 2003;23(2):154–65.PubMedCrossRefGoogle Scholar
  71. 71.
    Greenberg DA, Jin K. From angiogenesis to neuropathology. Nature. 2005;438(7070):954–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Grutzendler J, Kasthuri N, Gan WB. Long-term dendritic spine stability in the adult cortex. Nature. 2002;420(6917):812–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Corbett D, Giles T, Evans S, McLean J, Biernaskie J. Dynamic changes in CA1 dendritic spines associated with ischemic tolerance. Exp Neurol. 2006;202(1):133–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Brown CE, Li P, Boyd JD, Delaney KR, Murphy TH. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci. 2007;27(15):4101–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM, Moskowitz MA, et al. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci U S A. 2001;98(22):12766–71.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Shanina EV, Schallert T, Witte OW, Redecker C. Behavioral recovery from unilateral photothrombotic infarcts of the forelimb sensorimotor cortex in rats: role of the contralateral cortex. Neuroscience. 2006;139(4):1495–506.PubMedCrossRefGoogle Scholar
  77. 77.
    Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, et al. Extensive cortical rewiring after brain injury. J Neurosci. 2005;25(44):10167–79.PubMedCrossRefGoogle Scholar
  78. 78.
    Brown CE, Boyd JD, Murphy TH. Longitudinal in vivo imaging reveals balanced and branch-specific remodeling of mature cortical pyramidal dendritic arbors after stroke. J Cereb Blood Flow Metab. 2010;30(4):783–91.PubMedCrossRefGoogle Scholar
  79. 79.
    Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci. 2009;29(6):1719–34.PubMedCrossRefGoogle Scholar
  80. 80.
    Gonzalez CL, Kolb B. A comparison of different models of stroke on behaviour and brain morphology. Eur J Neurosci. 2003;18(7):1950–62.PubMedCrossRefGoogle Scholar
  81. 81.
    Rowntree S, Kolb B. Blockade of basic fibroblast growth factor retards recovery from motor cortex injury in rats. Eur J Neurosci. 1997;9(11):2432–41.PubMedCrossRefGoogle Scholar
  82. 82.
    Mostany R, Portera-Cailliau C. Absence of large-scale dendritic plasticity of layer 5 pyramidal neurons in peri-infarct cortex. J Neurosci. 2011;31(5):1734–8.PubMedCrossRefGoogle Scholar
  83. 83.
    David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science. 1981;214(4523):931–3.PubMedCrossRefGoogle Scholar
  84. 84.
    Schwab ME, Caroni P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci. 1988;8(7):2381–93.PubMedGoogle Scholar
  85. 85.
    Huttenlocher PR, de Courten C. The development of synapses in striate cortex of man. Hum Neurobiol. 1987;6(1):1–9.PubMedGoogle Scholar
  86. 86.
    Huttenlocher PR. Morphometric study of human cerebral cortex development. Neuropsychologia. 1990;28(6):517–27.PubMedCrossRefGoogle Scholar
  87. 87.
    Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387(2):167–78.PubMedCrossRefGoogle Scholar
  88. 88.
    Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci. 2000;3(Suppl):1178–83.PubMedCrossRefGoogle Scholar
  89. 89.
    Amantea D, Russo R, Gliozzi M, Fratto V, Berliocchi L, Bagetta G, et al. Early upregulation of matrix metalloproteinases following reperfusion triggers neuroinflammatory mediators in brain ischemia in rat. Int Rev Neurobiol. 2007;82:149–69.PubMedCrossRefGoogle Scholar
  90. 90.
    Rosell A, Lo EH. Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol. 2008;8(1):82–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders--time for clinical translation? J Clin Invest. 2010;120(1):29–40.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bliss TM, Andres RH, Steinberg GK. Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis. 2010;37(2):275–83.PubMedCrossRefGoogle Scholar
  93. 93.
    Hermann DM, Peruzzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR, Pluchino S. Neural precursor cells in the ischemic brain - integration, cellular crosstalk, and consequences for stroke recovery. Front Cell Neurosci. 2014;8:291.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci. 2006;7(5):395–406.PubMedCrossRefGoogle Scholar
  95. 95.
    Martino G, Bacigaluppi M, Peruzzotti-Jametti L. Therapeutic stem cell plasticity orchestrates tissue plasticity. Brain. 2011;134(Pt 6):1585–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, Kilic E, Kilic U, Salani G, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132(Pt 8):2239–51.PubMedCrossRefGoogle Scholar
  97. 97.
    Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol. 2002;20(11):1103–10.PubMedCrossRefGoogle Scholar
  98. 98.
    Einstein O, Karussis D, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Abramsky O, et al. Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci. 2003;24(4):1074–82.PubMedCrossRefGoogle Scholar
  99. 99.
    Hayase M, Kitada M, Wakao S, Itokazu Y, Nozaki K, Hashimoto N, et al. Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab. 2009;29(8):1409–20.PubMedCrossRefGoogle Scholar
  100. 100.
    Liao JK. Statins and ischemic stroke. Atheroscler Suppl. 2002;3(1):21–5.PubMedCrossRefGoogle Scholar
  101. 101.
    Prockop DJ, Olson SD. Clinical trials with adult stem/progenitor cells for tissue repair: let’s not overlook some essential precautions. Blood. 2007;109(8):3147–51.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.PubMedCrossRefGoogle Scholar
  103. 103.
    Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain. 2011;134(Pt 6):1777–89.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Nudo RJ. Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol. 2006;16(6):638–44.PubMedCrossRefGoogle Scholar
  105. 105.
    Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol. 2005;193(2):291–311.PubMedCrossRefGoogle Scholar
  106. 106.
    Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.PubMedCrossRefGoogle Scholar
  107. 107.
    Southwell DG, Froemke RC, Alvarez-Buylla A, Stryker MP, Gandhi SP. Cortical plasticity induced by inhibitory neuron transplantation. Science. 2010;327(5969):1145–8.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Reitmeir R, Kilic E, Kilic U, Bacigaluppi M, ElAli A, Salani G, et al. Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity. Brain. 2011;134(Pt 1):84–99.PubMedCrossRefGoogle Scholar
  109. 109.
    Reitmeir R, Kilic E, Reinboth BS, Guo Z, ElAli A, Zechariah A, et al. Vascular endothelial growth factor induces contralesional corticobulbar plasticity and functional neurological recovery in the ischemic brain. Acta Neuropathol. 2012;123(2):273–84.PubMedCrossRefGoogle Scholar
  110. 110.
    Andres RH, Choi R, Steinberg GK, Guzman R. Potential of adult neural stem cells in stroke therapy. Regen Med. 2008;3(6):893–905.PubMedCrossRefGoogle Scholar
  111. 111.
    Mosher KI, Andres RH, Fukuhara T, Bieri G, Hasegawa-Moriyama M, He Y, et al. Neural progenitor cells regulate microglia functions and activity. Nat Neurosci. 2012;15(11):1485–7.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Guzman R, De Los Angeles A, Cheshier S, Choi R, Hoang S, Liauw J, et al. Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke. 2008;39(4):1300–6.PubMedCrossRefGoogle Scholar
  113. 113.
    Andres RH, Choi R, Pendharkar AV, Gaeta X, Wang N, Nathan JK, et al. The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke. 2011;42(10):2923–31.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Rosenblum S, Smith TN, Wang N, Chua JY, Westbroek E, Wang K, et al. BDNF pretreatment of human embryonic-derived neural stem cells improves cell survival and functional recovery after transplantation in hypoxic-ischemic stroke. Cell Transplant. 2015;24(12):2449–61.PubMedCrossRefGoogle Scholar
  115. 115.
    Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, et al. Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke. 2016;47(7):1817–24.PubMedCrossRefGoogle Scholar
  116. 116.
    Garbuzova-Davis S, Haller E, Lin R, Borlongan CV. Intravenously transplanted human bone marrow endothelial progenitor cells engraft within brain capillaries, preserve mitochondrial morphology, and display pinocytotic activity toward blood-brain barrier repair in ischemic stroke rats. Stem Cells. 2017;35(5):1246–58.PubMedCrossRefGoogle Scholar
  117. 117.
    Di Santo S, Yang Z, Wyler von Ballmoos M, Voelzmann J, Diehm N, Baumgartner I, et al. Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS One. 2009;4(5):e5643.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Rosell A, Morancho A, Navarro-Sobrino M, Martinez-Saez E, Hernandez-Guillamon M, Lope-Piedrafita S, et al. Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice. PLoS One. 2013;8(9):e73244.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Di Santo S, Widmer HR. Paracrine factors for neurodegenerative disorders: special emphasis on Parkinson’s disease. Neural Regen Res. 2016;11(4):570–1.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Di Santo S, Seiler S, Fuchs AL, Staudigl J, Widmer HR. The secretome of endothelial progenitor cells promotes brain endothelial cell activity through PI3-kinase and MAP-kinase. PLoS One. 2014;9(4):e95731.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wang J, Chen Y, Yang Y, Xiao X, Chen S, Zhang C, et al. Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from Hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway. Mol Brain. 2016;9:12.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Di Santo S, Fuchs AL, Periasamy R, Seiler S, Widmer HR. The cytoprotective effects of human endothelial progenitor cell-conditioned medium against an ischemic insult are not dependent on VEGF and IL-8. Cell Transplant. 2016;25(4):735–47.PubMedCrossRefGoogle Scholar
  123. 123.
    Andres RH, Ducray AD, Andereggen L, Hohl T, Schlattner U, Wallimann T, et al. The effects of creatine supplementation on striatal neural progenitor cells depend on developmental stage. Amino Acids. 2016;48(8):1913–27.PubMedCrossRefGoogle Scholar
  124. 124.
    Hiu T, Farzampour Z, Paz JT, Wang EH, Badgely C, Olson A, et al. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target. Brain. 2016;139(Pt 2):468–80.PubMedCrossRefGoogle Scholar
  125. 125.
    Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci. 2005;6(6):449–62.PubMedCrossRefGoogle Scholar
  126. 126.
    Bitanihirwe BK, Cunningham MG. Zinc: the brain’s dark horse. Synapse. 2009;63(11):1029–49.PubMedCrossRefGoogle Scholar
  127. 127.
    Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science. 1996;272(5264):1013–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Land PW, Aizenman E. Zinc accumulation after target loss: an early event in retrograde degeneration of thalamic neurons. Eur J Neurosci. 2005;21(3):647–57.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci. 2009;10(11):780–91.PubMedCrossRefGoogle Scholar
  130. 130.
    Maret W. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics: Integrated Biometal. Science. 2015;7(2):202–11.Google Scholar
  131. 131.
    Pan E, Zhang XA, Huang Z, Krezel A, Zhao M, Tinberg CE, et al. Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron. 2011;71(6):1116–26.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Zhang F, Ma XL, Wang YX, He CC, Tian K, Wang HG, et al. TPEN, a specific Zn2+ chelator, inhibits sodium dithionite and glucose deprivation (SDGD)-induced neuronal death by modulating apoptosis, glutamate signaling, and voltage-gated K+ and Na+ channels. Cell Mol Neurobiol. 2017;37(2):235–50.PubMedCrossRefGoogle Scholar
  133. 133.
    Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci U S A. 2005;102(34):12230–5.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Bossy-Wetzel E, Talantova MV, Lee WD, Scholzke MN, Harrop A, Mathews E, et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron. 2004;41(3):351–65.PubMedCrossRefGoogle Scholar
  135. 135.
    Li Y, Andereggen L, Yuki K, Omura K, Yin Y, Gilbert HY, et al. Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proc Natl Acad Sci U S A. 2017;114(2):E209–E18.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kreisel SH, Hennerici MG, Bazner H. Pathophysiology of stroke rehabilitation: the natural course of clinical recovery, use-dependent plasticity and rehabilitative outcome. Cerebrovasc Dis. 2007;23(4):243–55.PubMedCrossRefGoogle Scholar
  137. 137.
    Kreisel SH, Bazner H, Hennerici MG. Pathophysiology of stroke rehabilitation: temporal aspects of neuro-functional recovery. Cerebrovasc Dis. 2006;21(1-2):6–17.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Lukas Andereggen
    • 1
    • 2
  • Raluca Reitmeir
    • 1
  • Stefano Di Santo
    • 1
  • Raphael Guzman
    • 3
    • 4
  • Hans R. Widmer
    • 1
  • Serge Marbacher
    • 1
    • 5
  • Robert H. Andres
    • 1
    • 4
    • 6
    • 7
    Email author
  1. 1.Department of NeurosurgeryUniversity of Berne, InselspitalBerneSwitzerland
  2. 2.Department of Neurosurgery and F.M. Kirby Neurobiology CenterHarvard Medical SchoolBostonUSA
  3. 3.Department of NeurosurgeryUniversity Hospital BaselBaselSwitzerland
  4. 4.Department of Neurosurgery and Stanford Stroke CenterStanford University School of MedicineStanfordUSA
  5. 5.Department of NeurosurgeryCantonal Hospital of AarauAarauSwitzerland
  6. 6.Department of Clinical ResearchUniversity of BerneBerneSwitzerland
  7. 7.Department of Neurosurgery, Research LaboratoryInselspitalBerneSwitzerland

Personalised recommendations