Mobilization of Endogenous Neural Stem Cells to Promote Regeneration After Stroke

  • Monika Rabenstein
  • Maria Adele RuegerEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Endogenous neural stem cells (eNSC) in the adult brain mainly reside in two stem cell niches, the subventricular zone (SVZ), and the hippocampal dentate gyrus. Following cerebral insults, they are mobilized from their niches to engage in regeneration and mediate functional recovery. After cerebral ischemia, eNSC generate new neurons in a process called neurogenesis, but also indirectly mediate regeneration via pleiotropic functions including neuroprotection, reduction of neuroinflammation, revascularization, and induction of plasticity. However, the physiological capacity of the brain for self-repair after stroke is insufficient in mammals. Thus, a promising therapeutic approach in stroke constitutes the targeted activation of eNSC by pharmacological substances, e.g. osteopontin or FGL, and by non-pharmacological approaches, such as transcranial direct current stimulation (tDCS). Since treatments based on the transplantation of stem cells harbor several disadvantages including poor long-term cell survival and a lack of integration into the host circuitry, mobilizing the eNSC niche for therapeutic purposes constitutes a most promising approach in stem cell research.


Osteopontin FGL Ar-tumerone Transcranial direct current stimulation (tDCS) Recovery Neurogenesis Neuroprotection Plasticity Functional recovery 





central nervous system




Experimental autoimmune encephalomyelitis


Epithelial growth factor


Endogenous neural stem cells


Fibroblast growth factor 2


Neural cell adhesion molecule FG Loop


Neural cell adhesion molecule






Rostral migratory stream


Subgranular zone of the hippocampus


Sonic hedgehog


Subventricular zone


Transcranial direct current stimulation


  1. 1.
    Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–35.CrossRefPubMedGoogle Scholar
  2. 2.
    Kaplan MS, Bell DH. Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J Neurosci. 1984;4(6):1429–41.PubMedGoogle Scholar
  3. 3.
    Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993;11(1):173–89.CrossRefPubMedGoogle Scholar
  4. 4.
    Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron. 1994;13(5):1071–82.CrossRefPubMedGoogle Scholar
  5. 5.
    Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97(6):703–16.CrossRefPubMedGoogle Scholar
  6. 6.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Hockfield S, McKay RD. Identification of major cell classes in the developing mammalian nervous system. J Neurosci. 1985;5(12):3310–28.PubMedGoogle Scholar
  8. 8.
    Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993;90(5):2074–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Temple S. Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989;340(6233):471–3.CrossRefPubMedGoogle Scholar
  10. 10.
    Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687–702.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Silva-Vargas V, Crouch EE, Doetsch F. Adult neural stem cells and their niche: a dynamic duo during homeostasis, regeneration, and aging. Curr Opin Neurobiol. 2013;23(6):935–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature. 2005;437(7060):894–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Gould E. How widespread is adult neurogenesis in mammals? Nat Rev Neurosci. 2007;8(6):481–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Masjkur J, Rueger MA, Bornstein SR, McKay R, Androutsellis-Theotokis A. Neurovascular signals suggest a propagation mechanism for endogenous stem cell activation along blood vessels. CNS Neurol Disord Drug Targets. 2012;11(7):805–17.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2(3):266–70.CrossRefPubMedGoogle Scholar
  16. 16.
    Garthe A, Roeder I, Kempermann G. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis. Hippocampus. 2016;26(2):261–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167(4):897–914.CrossRefPubMedGoogle Scholar
  18. 18.
    Bouab M, Paliouras GN, Aumont A, Forest-Bérard K, Fernandes KJ. Aging of the subventricular zone neural stem cell niche: evidence for quiescence-associated changes between early and mid-adulthood. Neuroscience. 2011;173:135–49.CrossRefPubMedGoogle Scholar
  19. 19.
    Signer RA, Morrison SJ. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell. 2013;12(2):152–65.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Adamczak J, Aswendt M, Kreutzer C, Rotheneichner P, Riou A, Selt M, et al. Neurogenesis upregulation on the healthy hemisphere after stroke enhances compensation for age-dependent decrease of basal neurogenesis. Neurobiol Dis. 2017;99:47–57.CrossRefPubMedGoogle Scholar
  21. 21.
    Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442(7104):823–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol. 2002;20(11):1103–10.CrossRefPubMedGoogle Scholar
  23. 23.
    Chopp M, Li Y, Zhang ZG. Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke. 2009;40(3 Suppl):S143–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Einstein O, Ben-Hur T. The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol. 2008;65(4):452–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Jessberger S, Gage FH. Adult neurogenesis: bridging the gap between mice and humans. Trends Cell Biol. 2014;24(10):558–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6):1219–27.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Spalding KL, Bhardwaj RD, Buchholz BA, Druid H, Frisén J. Retrospective birth dating of cells in humans. Cell. 2005;122(1):133–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Björk-Eriksson T, et al. Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci U S A. 2006;103(33):12564–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315(5816):1243–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, et al. The age of olfactory bulb neurons in humans. Neuron. 2012;74(4):634–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156(5):1072–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Huttner HB, Bergmann O, Salehpour M, Rácz A, Tatarishvili J, Lindgren E, et al. The age and genomic integrity of neurons after cortical stroke in humans. Nat Neurosci. 2014;17(6):801–3.CrossRefPubMedGoogle Scholar
  34. 34.
    Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A. 2006;103(35):13198–202.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Leker RR, Soldner F, Velasco I, Gavin DK, Androutsellis-Theotokis A, McKay RD. Long-lasting regeneration after ischemia in the cerebral cortex. Stroke. 2007;38(1):153–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Kreuzberg M, Kanov E, Timofeev O, Schwaninger M, Monyer H, Khodosevich K. Increased subventricular zone-derived cortical neurogenesis after ischemic lesion. Exp Neurol. 2010;226(1):90–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Mackay J, Mensah G. Atlas of heart disease and stroke. Geneva: World Health Organization; 2004.Google Scholar
  38. 38.
    Schroeter M, Jander S, Witte OW, Stoll G. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol. 1994;55(2):195–203.CrossRefPubMedGoogle Scholar
  39. 39.
    Schroeter M, Franke C, Stoll G, Hoehn M. Dynamic changes of magnetic resonance imaging abnormalities in relation to inflammation and glial responses after photothrombotic cerebral infarction in the rat brain. Acta Neuropathol. 2001;101(2):114–22.PubMedGoogle Scholar
  40. 40.
    Schroeter M, Jander S, Witte OW, Stoll G. Heterogeneity of the microglial response in photochemically induced focal ischemia of the rat cerebral cortex. Neuroscience. 1999;89(4):1367–77.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184(1-2):53–68.CrossRefPubMedGoogle Scholar
  42. 42.
    Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara K, Yagita Y, Yanagihara T, et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke. 2000;31(7):1735–43.CrossRefPubMedGoogle Scholar
  43. 43.
    Hallenbeck JM, Dutka AJ, Tanishima T, Kochanek PM, Kumaroo KK, Thompson CB, et al. Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke. 1986;17(2):246–53.CrossRefPubMedGoogle Scholar
  44. 44.
    Belmadani A, Tran PB, Ren D, Miller RJ. Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci. 2006;26(12):3182–91.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Stoll G, Jander S, Schroeter M. Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol. 2002;513:87–113.PubMedGoogle Scholar
  46. 46.
    Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101(52):18117–22.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, Zhang L, et al. Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab. 2006;26(1):125–34.CrossRefPubMedGoogle Scholar
  48. 48.
    Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739–47.CrossRefPubMedGoogle Scholar
  49. 49.
    Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B. Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci. 2006;7:64.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A. 2001;98(8):4710–5.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci. 1998;18(19):7768–78.PubMedGoogle Scholar
  52. 52.
    Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.CrossRefPubMedGoogle Scholar
  53. 53.
    Schroeter M, Dennin MA, Walberer M, Backes H, Neumaier B, Fink GR, et al. Neuroinflammation extends brain tissue at risk to vital peri-infarct tissue: a double tracer [11C]PK11195- and [18F]FDG-PET study. J Cereb Blood Flow Metab. 2009;29(6):1216–25.CrossRefPubMedGoogle Scholar
  54. 54.
    Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders--time for clinical translation? J Clin Invest. 2010;120(1):29–40.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Martens DJ, Seaberg RM, van der Kooy D. In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur J Neurosci. 2002;16(6):1045–57.CrossRefPubMedGoogle Scholar
  56. 56.
    Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci. 1997;17(15):5820–9.PubMedGoogle Scholar
  57. 57.
    Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110(4):429–41.CrossRefPubMedGoogle Scholar
  58. 58.
    Androutsellis-Theotokis A, Rueger MA, Park DM, Mkhikian H, Korb E, Poser SW, et al. Targeting neural precursors in the adult brain rescues injured dopamine neurons. Proc Natl Acad Sci U S A. 2009;106(32):13570–5.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Klein R, Blaschke S, Neumaier B, Endepols H, Graf R, Keuters M, et al. The synthetic NCAM mimetic peptide FGL mobilizes neural stem cells in vitro and in vivo. Stem Cell Rev. 2014;10(4):539–47.CrossRefPubMedGoogle Scholar
  60. 60.
    Klein R, Mahlberg N, Ohren M, Ladwig A, Neumaier B, Graf R, et al. The neural cell adhesion molecule-derived (NCAM)-peptide FG loop (FGL) mobilizes endogenous neural stem cells and promotes endogenous regenerative capacity after stroke. J Neuroimmune Pharmacol. 2016;11(4):708–20.CrossRefPubMedGoogle Scholar
  61. 61.
    Jin Y, Barnett A, Zhang Y, Yu X, Luo Y. Poststroke sonic hedgehog agonist treatment improves functional recovery by enhancing neurogenesis and angiogenesis. Stroke. 2017;48(6):1636–45.CrossRefPubMedGoogle Scholar
  62. 62.
    Hucklenbroich J, Klein R, Neumaier B, Graf R, Fink GR, Schroeter M, et al. Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo. Stem Cell Res Ther. 2014;5(4):100.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Rabenstein M, Hucklenbroich J, Willuweit A, Ladwig A, Fink GR, Schroeter M, et al. Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4. Stem Cell Res Ther. 2015;6:99.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Rabenstein M, Vay SU, Flitsch LJ, Fink GR, Schroeter M, Rueger MA. Osteopontin directly modulates cytokine expression of primary microglia and increases their survival. J Neuroimmunol. 2016;299:130–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Brown A. Osteopontin: a key link between immunity, inflammation and the central nervous system. Transl Neurosci. 2012;3(3):288–93.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest. 2001;107(9):1055–61.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Rueger MA, Muesken S, Walberer M, Jantzen SU, Schnakenburg K, Backes H, et al. Effects of minocycline on endogenous neural stem cells after experimental stroke. Neuroscience. 2012;215:174–83.CrossRefPubMedGoogle Scholar
  68. 68.
    Vay SU, Blaschke S, Klein R, Fink GR, Schroeter M, Rueger MA. Minocycline mitigates the gliogenic effects of proinflammatory cytokines on neural stem cells. J Neurosci Res. 2016;94(2):149–60.CrossRefPubMedGoogle Scholar
  69. 69.
    Sparing R, Thimm M, Hesse MD, Küst J, Karbe H, Fink GR. Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain. 2009;132(Pt 11):3011–20.CrossRefPubMedGoogle Scholar
  70. 70.
    Hummel F, Celnik P, Giraux P, Floel A, WH W, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):490–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Rueger MA, Keuters MH, Walberer M, Braun R, Klein R, Sparing R, et al. Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain. PLoS One. 2012;7(8):e43776.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Keuters MH, Aswendt M, Tennstaedt A, Wiedermann D, Pikhovych A, Rotthues S, et al. Transcranial direct current stimulation promotes the mobility of engrafted NSCs in the rat brain. NMR Biomed. 2015;28(2):231–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K, et al. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol. 2016;279:127–36.CrossRefPubMedGoogle Scholar
  74. 74.
    Pikhovych A, Stolberg NP, Jessica Flitsch L, Walter HL, Graf R, Fink GR, et al. Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells Int. 2016;2016:2715196.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Topkoru BC, Altay O, Duris K, Krafft PR, Yan J, Zhang JH. Nasal administration of recombinant osteopontin attenuates early brain injury after subarachnoid hemorrhage. Stroke. 2013;44(11):3189–94.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Samanta J, Grund EM, Silva HM, Lafaille JJ, Fishell G, Salzer JL. Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination. Nature. 2015;526(7573):448–52.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Rueger MA, Backes H, Walberer M, Neumaier B, Ullrich R, Simard ML, et al. Noninvasive imaging of endogenous neural stem cell mobilization in vivo using positron emission tomography. J Neurosci. 2010;30(18):6454–60.CrossRefPubMedGoogle Scholar
  78. 78.
    Rueger MA, Schroeter M. In vivo imaging of endogenous neural stem cells in the adult brain. World J Stem Cells. 2015;7(1):75–83.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of NeurologyUniversity Hospital of CologneCologneGermany
  2. 2.Neural Stem Cell Laboratory, Department of NeurologyUniversity Hospital of CologneCologneGermany

Personalised recommendations