Skip to main content

Mobilization of Endogenous Neural Stem Cells to Promote Regeneration After Stroke

  • Chapter
  • First Online:
  • 988 Accesses

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Endogenous neural stem cells (eNSC) in the adult brain mainly reside in two stem cell niches, the subventricular zone (SVZ), and the hippocampal dentate gyrus. Following cerebral insults, they are mobilized from their niches to engage in regeneration and mediate functional recovery. After cerebral ischemia, eNSC generate new neurons in a process called neurogenesis, but also indirectly mediate regeneration via pleiotropic functions including neuroprotection, reduction of neuroinflammation, revascularization, and induction of plasticity. However, the physiological capacity of the brain for self-repair after stroke is insufficient in mammals. Thus, a promising therapeutic approach in stroke constitutes the targeted activation of eNSC by pharmacological substances, e.g. osteopontin or FGL, and by non-pharmacological approaches, such as transcranial direct current stimulation (tDCS). Since treatments based on the transplantation of stem cells harbor several disadvantages including poor long-term cell survival and a lack of integration into the host circuitry, mobilizing the eNSC niche for therapeutic purposes constitutes a most promising approach in stem cell research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BrDU:

Bromodeoxyuridine

CNS:

central nervous system

DCX:

Doublecortin

EAE:

Experimental autoimmune encephalomyelitis

EGF:

Epithelial growth factor

eNSC:

Endogenous neural stem cells

FGF 2:

Fibroblast growth factor 2

FGL:

Neural cell adhesion molecule FG Loop

NCAM:

Neural cell adhesion molecule

OPN:

Osteopontin

PET:

Positron-Emission-Tomography

RMS:

Rostral migratory stream

SGZ:

Subgranular zone of the hippocampus

Shh:

Sonic hedgehog

SVZ:

Subventricular zone

tDCS:

Transcranial direct current stimulation

References

  1. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965;124(3):319–35.

    Article  CAS  PubMed  Google Scholar 

  2. Kaplan MS, Bell DH. Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J Neurosci. 1984;4(6):1429–41.

    CAS  PubMed  Google Scholar 

  3. Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993;11(1):173–89.

    Article  CAS  PubMed  Google Scholar 

  4. Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron. 1994;13(5):1071–82.

    Article  CAS  PubMed  Google Scholar 

  5. Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97(6):703–16.

    Article  CAS  PubMed  Google Scholar 

  6. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707–10.

    Article  CAS  PubMed  Google Scholar 

  7. Hockfield S, McKay RD. Identification of major cell classes in the developing mammalian nervous system. J Neurosci. 1985;5(12):3310–28.

    CAS  PubMed  Google Scholar 

  8. Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993;90(5):2074–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Temple S. Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989;340(6233):471–3.

    Article  CAS  PubMed  Google Scholar 

  10. Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70(4):687–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Silva-Vargas V, Crouch EE, Doetsch F. Adult neural stem cells and their niche: a dynamic duo during homeostasis, regeneration, and aging. Curr Opin Neurobiol. 2013;23(6):935–42.

    Article  CAS  PubMed  Google Scholar 

  12. Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature. 2005;437(7060):894–7.

    Article  CAS  PubMed  Google Scholar 

  13. Gould E. How widespread is adult neurogenesis in mammals? Nat Rev Neurosci. 2007;8(6):481–8.

    Article  CAS  PubMed  Google Scholar 

  14. Masjkur J, Rueger MA, Bornstein SR, McKay R, Androutsellis-Theotokis A. Neurovascular signals suggest a propagation mechanism for endogenous stem cell activation along blood vessels. CNS Neurol Disord Drug Targets. 2012;11(7):805–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. 1999;2(3):266–70.

    Article  PubMed  Google Scholar 

  16. Garthe A, Roeder I, Kempermann G. Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis. Hippocampus. 2016;26(2):261–71.

    Article  PubMed  Google Scholar 

  17. Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167(4):897–914.

    Article  PubMed  Google Scholar 

  18. Bouab M, Paliouras GN, Aumont A, Forest-Bérard K, Fernandes KJ. Aging of the subventricular zone neural stem cell niche: evidence for quiescence-associated changes between early and mid-adulthood. Neuroscience. 2011;173:135–49.

    Article  CAS  PubMed  Google Scholar 

  19. Signer RA, Morrison SJ. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell. 2013;12(2):152–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Adamczak J, Aswendt M, Kreutzer C, Rotheneichner P, Riou A, Selt M, et al. Neurogenesis upregulation on the healthy hemisphere after stroke enhances compensation for age-dependent decrease of basal neurogenesis. Neurobiol Dis. 2017;99:47–57.

    Article  CAS  PubMed  Google Scholar 

  21. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442(7104):823–6.

    Article  CAS  PubMed  Google Scholar 

  22. Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol. 2002;20(11):1103–10.

    Article  CAS  PubMed  Google Scholar 

  23. Chopp M, Li Y, Zhang ZG. Mechanisms underlying improved recovery of neurological function after stroke in the rodent after treatment with neurorestorative cell-based therapies. Stroke. 2009;40(3 Suppl):S143–5.

    Article  PubMed  Google Scholar 

  24. Einstein O, Ben-Hur T. The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol. 2008;65(4):452–6.

    Article  PubMed  Google Scholar 

  25. Jessberger S, Gage FH. Adult neurogenesis: bridging the gap between mice and humans. Trends Cell Biol. 2014;24(10):558–63.

    Article  PubMed  Google Scholar 

  26. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7.

    Article  CAS  PubMed  Google Scholar 

  27. Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153(6):1219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Spalding KL, Bhardwaj RD, Buchholz BA, Druid H, Frisén J. Retrospective birth dating of cells in humans. Cell. 2005;122(1):133–43.

    Article  CAS  PubMed  Google Scholar 

  29. Bhardwaj RD, Curtis MA, Spalding KL, Buchholz BA, Fink D, Björk-Eriksson T, et al. Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci U S A. 2006;103(33):12564–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315(5816):1243–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bergmann O, Liebl J, Bernard S, Alkass K, Yeung MS, Steier P, et al. The age of olfactory bulb neurons in humans. Neuron. 2012;74(4):634–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156(5):1072–83.

    Article  CAS  PubMed  Google Scholar 

  33. Huttner HB, Bergmann O, Salehpour M, Rácz A, Tatarishvili J, Lindgren E, et al. The age and genomic integrity of neurons after cortical stroke in humans. Nat Neurosci. 2014;17(6):801–3.

    Article  CAS  PubMed  Google Scholar 

  34. Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A. 2006;103(35):13198–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leker RR, Soldner F, Velasco I, Gavin DK, Androutsellis-Theotokis A, McKay RD. Long-lasting regeneration after ischemia in the cerebral cortex. Stroke. 2007;38(1):153–61.

    Article  PubMed  Google Scholar 

  36. Kreuzberg M, Kanov E, Timofeev O, Schwaninger M, Monyer H, Khodosevich K. Increased subventricular zone-derived cortical neurogenesis after ischemic lesion. Exp Neurol. 2010;226(1):90–9.

    Article  CAS  PubMed  Google Scholar 

  37. Mackay J, Mensah G. Atlas of heart disease and stroke. Geneva: World Health Organization; 2004.

    Google Scholar 

  38. Schroeter M, Jander S, Witte OW, Stoll G. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol. 1994;55(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  39. Schroeter M, Franke C, Stoll G, Hoehn M. Dynamic changes of magnetic resonance imaging abnormalities in relation to inflammation and glial responses after photothrombotic cerebral infarction in the rat brain. Acta Neuropathol. 2001;101(2):114–22.

    CAS  PubMed  Google Scholar 

  40. Schroeter M, Jander S, Witte OW, Stoll G. Heterogeneity of the microglial response in photochemically induced focal ischemia of the rat cerebral cortex. Neuroscience. 1999;89(4):1367–77.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184(1-2):53–68.

    Article  CAS  PubMed  Google Scholar 

  42. Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara K, Yagita Y, Yanagihara T, et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke. 2000;31(7):1735–43.

    Article  CAS  PubMed  Google Scholar 

  43. Hallenbeck JM, Dutka AJ, Tanishima T, Kochanek PM, Kumaroo KK, Thompson CB, et al. Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke. 1986;17(2):246–53.

    Article  CAS  PubMed  Google Scholar 

  44. Belmadani A, Tran PB, Ren D, Miller RJ. Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci. 2006;26(12):3182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stoll G, Jander S, Schroeter M. Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv Exp Med Biol. 2002;513:87–113.

    CAS  PubMed  Google Scholar 

  46. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A. 2004;101(52):18117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, Zhang L, et al. Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab. 2006;26(1):125–34.

    Article  CAS  PubMed  Google Scholar 

  48. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739–47.

    Article  CAS  PubMed  Google Scholar 

  49. Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B. Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci. 2006;7:64.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A. 2001;98(8):4710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci. 1998;18(19):7768–78.

    CAS  PubMed  Google Scholar 

  52. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.

    Article  CAS  PubMed  Google Scholar 

  53. Schroeter M, Dennin MA, Walberer M, Backes H, Neumaier B, Fink GR, et al. Neuroinflammation extends brain tissue at risk to vital peri-infarct tissue: a double tracer [11C]PK11195- and [18F]FDG-PET study. J Cereb Blood Flow Metab. 2009;29(6):1216–25.

    Article  CAS  PubMed  Google Scholar 

  54. Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders--time for clinical translation? J Clin Invest. 2010;120(1):29–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martens DJ, Seaberg RM, van der Kooy D. In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur J Neurosci. 2002;16(6):1045–57.

    Article  PubMed  Google Scholar 

  56. Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci. 1997;17(15):5820–9.

    CAS  PubMed  Google Scholar 

  57. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell. 2002;110(4):429–41.

    Article  CAS  PubMed  Google Scholar 

  58. Androutsellis-Theotokis A, Rueger MA, Park DM, Mkhikian H, Korb E, Poser SW, et al. Targeting neural precursors in the adult brain rescues injured dopamine neurons. Proc Natl Acad Sci U S A. 2009;106(32):13570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Klein R, Blaschke S, Neumaier B, Endepols H, Graf R, Keuters M, et al. The synthetic NCAM mimetic peptide FGL mobilizes neural stem cells in vitro and in vivo. Stem Cell Rev. 2014;10(4):539–47.

    Article  CAS  PubMed  Google Scholar 

  60. Klein R, Mahlberg N, Ohren M, Ladwig A, Neumaier B, Graf R, et al. The neural cell adhesion molecule-derived (NCAM)-peptide FG loop (FGL) mobilizes endogenous neural stem cells and promotes endogenous regenerative capacity after stroke. J Neuroimmune Pharmacol. 2016;11(4):708–20.

    Article  PubMed  Google Scholar 

  61. Jin Y, Barnett A, Zhang Y, Yu X, Luo Y. Poststroke sonic hedgehog agonist treatment improves functional recovery by enhancing neurogenesis and angiogenesis. Stroke. 2017;48(6):1636–45.

    Article  CAS  PubMed  Google Scholar 

  62. Hucklenbroich J, Klein R, Neumaier B, Graf R, Fink GR, Schroeter M, et al. Aromatic-turmerone induces neural stem cell proliferation in vitro and in vivo. Stem Cell Res Ther. 2014;5(4):100.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rabenstein M, Hucklenbroich J, Willuweit A, Ladwig A, Fink GR, Schroeter M, et al. Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4. Stem Cell Res Ther. 2015;6:99.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rabenstein M, Vay SU, Flitsch LJ, Fink GR, Schroeter M, Rueger MA. Osteopontin directly modulates cytokine expression of primary microglia and increases their survival. J Neuroimmunol. 2016;299:130–8.

    Article  CAS  PubMed  Google Scholar 

  65. Brown A. Osteopontin: a key link between immunity, inflammation and the central nervous system. Transl Neurosci. 2012;3(3):288–93.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest. 2001;107(9):1055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rueger MA, Muesken S, Walberer M, Jantzen SU, Schnakenburg K, Backes H, et al. Effects of minocycline on endogenous neural stem cells after experimental stroke. Neuroscience. 2012;215:174–83.

    Article  CAS  PubMed  Google Scholar 

  68. Vay SU, Blaschke S, Klein R, Fink GR, Schroeter M, Rueger MA. Minocycline mitigates the gliogenic effects of proinflammatory cytokines on neural stem cells. J Neurosci Res. 2016;94(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  69. Sparing R, Thimm M, Hesse MD, Küst J, Karbe H, Fink GR. Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain. 2009;132(Pt 11):3011–20.

    Article  CAS  PubMed  Google Scholar 

  70. Hummel F, Celnik P, Giraux P, Floel A, WH W, Gerloff C, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005;128(Pt 3):490–9.

    Article  PubMed  Google Scholar 

  71. Rueger MA, Keuters MH, Walberer M, Braun R, Klein R, Sparing R, et al. Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain. PLoS One. 2012;7(8):e43776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Keuters MH, Aswendt M, Tennstaedt A, Wiedermann D, Pikhovych A, Rotthues S, et al. Transcranial direct current stimulation promotes the mobility of engrafted NSCs in the rat brain. NMR Biomed. 2015;28(2):231–9.

    Article  PubMed  Google Scholar 

  73. Braun R, Klein R, Walter HL, Ohren M, Freudenmacher L, Getachew K, et al. Transcranial direct current stimulation accelerates recovery of function, induces neurogenesis and recruits oligodendrocyte precursors in a rat model of stroke. Exp Neurol. 2016;279:127–36.

    Article  PubMed  Google Scholar 

  74. Pikhovych A, Stolberg NP, Jessica Flitsch L, Walter HL, Graf R, Fink GR, et al. Transcranial direct current stimulation modulates neurogenesis and microglia activation in the mouse brain. Stem Cells Int. 2016;2016:2715196.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Topkoru BC, Altay O, Duris K, Krafft PR, Yan J, Zhang JH. Nasal administration of recombinant osteopontin attenuates early brain injury after subarachnoid hemorrhage. Stroke. 2013;44(11):3189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Samanta J, Grund EM, Silva HM, Lafaille JJ, Fishell G, Salzer JL. Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination. Nature. 2015;526(7573):448–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rueger MA, Backes H, Walberer M, Neumaier B, Ullrich R, Simard ML, et al. Noninvasive imaging of endogenous neural stem cell mobilization in vivo using positron emission tomography. J Neurosci. 2010;30(18):6454–60.

    Article  CAS  PubMed  Google Scholar 

  78. Rueger MA, Schroeter M. In vivo imaging of endogenous neural stem cells in the adult brain. World J Stem Cells. 2015;7(1):75–83.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Adele Rueger M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabenstein, M., Rueger, M.A. (2018). Mobilization of Endogenous Neural Stem Cells to Promote Regeneration After Stroke. In: Lapchak, P., Zhang, J. (eds) Cellular and Molecular Approaches to Regeneration and Repair. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-66679-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66679-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66678-5

  • Online ISBN: 978-3-319-66679-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics