The Inflammatory Response and Its Effect on Rehabilitation-Induced Repair Processes After Stroke

  • Ali Alawieh
  • Farris Langley
  • Stephen TomlinsonEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Post-stroke inflammation is associated with a significant exacerbation of acute injury, and at the same time promotes an unfavorable environment for regeneration and recovery. Sustained inflammation after stroke is associated with poor motor and cognitive recovery and limits the ability of the brain to engage in and benefit from rehabilitation paradigms. Stroke comorbidities such as aging, diabetes, and smoking are all associated with a more robust neuroinflammatory response after stroke and poor outcomes. Preclinical and clinical studies have not yet investigated the role of post-stroke neuroinflammation in predicting the response to rehabilitation therapy. Here, we review the interaction between post-stroke neuroinflammation and determinants of response to rehabilitation therapy, we discuss the few studies that used anti-inflammatory therapy to boost the response to rehabilitative interventions, and we emphasize the need for combining anti-inflammatory therapy and rehabilitation in both therapeutic and mechanistic studies of experimental stroke.


Inflammation Post-stroke plasticity Stroke Neurogenesis Rehabilitation Combination therapy 



Nonsteroidal anti-inflammatory drug


C-reactive protein


Sub-ventricular zone


Sub-granular zone


Complement receptor 2—Factor H




soluble Tumor Necrosis Factor α receptor 1


Tumor Necrosis Factor α



Authors acknowledge support from the NIH (1P20GM109040, U54 GM10494) to ST, the Department of Veterans Affairs (Merit Award 1I01RX001141 and 1BX001218) to ST, and an American Heart Association Pre-doctoral Fellowship to AA (15PRE25250009).


  1. 1.
    Alawieh A, Elvington A, Tomlinson S. Complement in the homeostatic and ischemic brain. Front Immunol. 2015;6:417.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alawieh A, Narang A, Tomlinson S. Complementing regeneration. Oncotarget. 2015;6(26):21769–70.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Alawieh A, Zhao J, Feng W. Factors affecting post-stroke motor recovery: implications on neurotherapy after brain injury. Behav Brain Res. 2016;Google Scholar
  4. 4.
    Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54.CrossRefPubMedGoogle Scholar
  6. 6.
    Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol. 2014;10(10):597–608.CrossRefPubMedGoogle Scholar
  7. 7.
    Bowden MG, Woodbury ML, Duncan PW. Promoting neuroplasticity and recovery after stroke: future directions for rehabilitation clinical trials. Curr Opin Neurol. 2013;26(1):37–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Dimyan MA, Cohen LG. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol. 2011;7(2):76–85.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhao LR, Risedal A, Wojcik A, Hejzlar J, Johansson BB, Kokaia Z. Enriched environment influences brain-derived neurotrophic factor levels in rat forebrain after focal stroke. Neurosci Lett. 2001;305(3):169–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Hicks AU, Hewlett K, Windle V, Chernenko G, Ploughman M, Jolkkonen J, et al. Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience. 2007;146(1):31–40.CrossRefPubMedGoogle Scholar
  12. 12.
    Luo CX, Jiang J, Zhou QG, Zhu XJ, Wang W, Zhang ZJ, et al. Voluntary exercise-induced neurogenesis in the postischemic dentate gyrus is associated with spatial memory recovery from stroke. J Neurosci Res. 2007;85(8):1637–46.CrossRefPubMedGoogle Scholar
  13. 13.
    Kim MW, Bang MS, Han TR, Ko YJ, Yoon BW, Kim JH, et al. Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain. Brain Res. 2005;1052(1):16–21.CrossRefPubMedGoogle Scholar
  14. 14.
    Stroemer RP, Kent TA, Hulsebosch CE. Enhanced neocortical neural sprouting, synaptogenesis, and behavioral recovery with D-amphetamine therapy after neocortical infarction in rats. Stroke. 1998;29(11):2381–93. discussion 93–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–44.CrossRefPubMedGoogle Scholar
  16. 16.
    Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302(5651):1760–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Greifzu F, Schmidt S, Schmidt KF, Kreikemeier K, Witte OW, Lowel S. Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke. Proc Natl Acad Sci U S A. 2011;108(37):15450–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Marquardt L, Ruf A, Mansmann U, Winter R, Buggle F, Kallenberg K, et al. Inflammatory response after acute ischemic stroke. J Neurol Sci. 2005;236(1-2):65–71.CrossRefPubMedGoogle Scholar
  19. 19.
    Winovich DT, Longstreth WT, Jr., Arnold AM, Varadhan R, Zeki Al Hazzouri A, Cushman M, et al. Factors associated with ischemic stroke survival and recovery in older adults. Stroke 2017.Google Scholar
  20. 20.
    Kuo HK, Yen CJ, Chang CH, Kuo CK, Chen JH, Sorond F. Relation of C-reactive protein to stroke, cognitive disorders, and depression in the general population: systematic review and meta-analysis. Lancet Neurol. 2005;4(6):371–80.CrossRefPubMedGoogle Scholar
  21. 21.
    Rost NS, Wolf PA, Kase CS, Kelly-Hayes M, Silbershatz H, Massaro JM, et al. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack: the Framingham study. Stroke. 2001;32(11):2575–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Kelly PJ, Furie KL, Shafqat S, Rallis N, Chang Y, Stein J. Functional recovery following rehabilitation after hemorrhagic and ischemic stroke. Arch Phys Med Rehabil. 2003;84(7):968–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401–10.CrossRefPubMedGoogle Scholar
  24. 24.
    Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ekdahl CT, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience. 2009;158(3):1021–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Adamczak J, Aswendt M, Kreutzer C, Rotheneichner P, Riou A, Selt M, et al. Neurogenesis upregulation on the healthy hemisphere after stroke enhances compensation for age-dependent decrease of basal neurogenesis. Neurobiol Dis. 2016;99:47–57.CrossRefPubMedGoogle Scholar
  27. 27.
    Koh SH, Park HH. Neurogenesis in stroke recovery. Transl Stroke Res. 2017;8(1):3–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Shiromoto T, Okabe N, Lu F, Maruyama-Nakamura E, Himi N, Narita K, et al. The role of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke in rats. J Stroke Cerebrovasc Dis. 2017;26(2):260–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Xiong XY, Liu L, Yang QW. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 2016;142:23–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739–47.CrossRefPubMedGoogle Scholar
  31. 31.
    Kokaia Z, Lindvall O. Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol. 2003;13(1):127–32.CrossRefPubMedGoogle Scholar
  32. 32.
    Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;7:97.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chien MY, Chuang CH, Chern CM, Liou KT, Liu DZ, Hou YC, et al. Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice. Free Radic Biol Med. 2016;99:508–19.CrossRefPubMedGoogle Scholar
  34. 34.
    Kim H, Wei Y, Lee JY, Wu Y, Zheng Y, Moskowitz MA, et al. Myeloperoxidase inhibition increases neurogenesis after ischemic stroke. J Pharmacol Exp Ther. 2016;359(2):262–72.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ahmed ME, Tucker D, Dong Y, Lu Y, Zhao N, Wang R, et al. Methylene Blue promotes cortical neurogenesis and ameliorates behavioral deficit after photothrombotic stroke in rats. Neuroscience. 2016;336:39–48.CrossRefPubMedGoogle Scholar
  36. 36.
    Xia CF, Yin H, Yao YY, Borlongan CV, Chao L, Chao J. Kallikrein protects against ischemic stroke by inhibiting apoptosis and inflammation and promoting angiogenesis and neurogenesis. Hum Gene Ther. 2006;17(2):206–19.CrossRefPubMedGoogle Scholar
  37. 37.
    Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD, Lazarov O. Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here. J Cereb Blood Flow Metab. 2014;34(10):1573–84.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Saino O, Taguchi A, Nakagomi T, Nakano-Doi A, Kashiwamura S, Doe N, et al. Immunodeficiency reduces neural stem/progenitor cell apoptosis and enhances neurogenesis in the cerebral cortex after stroke. J Neurosci Res. 2010;88(11):2385–97.PubMedGoogle Scholar
  39. 39.
    Pluchino S, Muzio L, Imitola J, Deleidi M, Alfaro-Cervello C, Salani G, et al. Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain. 2008;131(Pt 10):2564–78.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kang SS, Keasey MP, Arnold SA, Reid R, Geralds J, Hagg T. Endogenous CNTF mediates stroke-induced adult CNS neurogenesis in mice. Neurobiol Dis. 2013;49:68–78.CrossRefPubMedGoogle Scholar
  41. 41.
    Strassburger M, Braun H, Reymann KG. Anti-inflammatory treatment with the p38 mitogen-activated protein kinase inhibitor SB239063 is neuroprotective, decreases the number of activated microglia and facilitates neurogenesis in oxygen-glucose-deprived hippocampal slice cultures. Eur J Pharmacol. 2008;592(1-3):55–61.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhou J, Cheng G, Kong R, Gao DK, Zhang X. The selective ablation of inflammation in an acute stage of ischemic stroke may be a new strategy to promote neurogenesis. Med Hypotheses. 2011;76(1):1–3.CrossRefPubMedGoogle Scholar
  43. 43.
    Alawieh A, Elvington A, Zhu H, Yu J, Kindy MS, Atkinson C, et al. Modulation of post-stroke degenerative and regenerative processes and subacute protection by site-targeted inhibition of the alternative pathway of complement. J Neuroinflammation. 2015;12:247.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N. Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci. 2003;24(3):623–31.CrossRefPubMedGoogle Scholar
  45. 45.
    Peng H, Whitney N, Wu Y, Tian C, Dou H, Zhou Y, et al. HIV-1-infected and/or immune-activated macrophage-secreted TNF-alpha affects human fetal cortical neural progenitor cell proliferation and differentiation. Glia. 2008;56(8):903–16.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Whitney NP, Eidem TM, Peng H, Huang Y, Zheng JC. Inflammation mediates varying effects in neurogenesis: relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem. 2009;108(6):1343–59.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9(2):268–75.CrossRefPubMedGoogle Scholar
  48. 48.
    Ziv Y, Avidan H, Pluchino S, Martino G, Schwartz M. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci U S A. 2006;103(35):13174–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Darsalia V, Heldmann U, Lindvall O, Kokaia Z. Stroke-induced neurogenesis in aged brain. Stroke. 2005;36(8):1790–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Carmichael ST. Themes and strategies for studying the biology of stroke recovery in the poststroke epoch. Stroke. 2008;39(4):1380–8.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Brown CE, Li P, Boyd JD, Delaney KR, Murphy TH. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci. 2007;27(15):4101–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Liu Z, Li Y, Zhang X, Savant-Bhonsale S, Chopp M. Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment. Stroke. 2008;39(9):2571–7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Liu Z, Zhang RL, Li Y, Cui Y, Chopp M. Remodeling of the corticospinal innervation and spontaneous behavioral recovery after ischemic stroke in adult mice. Stroke. 2009;40(7):2546–51.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sozmen EG, Rosenzweig S, Llorente IL, DiTullio DJ, Machnicki M, Vinters HV, et al. Nogo receptor blockade overcomes remyelination failure after white matter stroke and stimulates functional recovery in aged mice. Proc Natl Acad Sci U S A. 2016;113(52):E8453–E62.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Schmidt A, Minnerup J. Promoting recovery from ischemic stroke. Expert Rev Neurother. 2016;16(2):173–86.CrossRefPubMedGoogle Scholar
  56. 56.
    Lee JK, Kim JE, Sivula M, Strittmatter SM. Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J Neurosci. 2004;24(27):6209–17.CrossRefPubMedGoogle Scholar
  57. 57.
    Wiessner C, Bareyre FM, Allegrini PR, Mir AK, Frentzel S, Zurini M, et al. Anti-Nogo-A antibody infusion 24 hours after experimental stroke improved behavioral outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats. J Cereb Blood Flow Metab. 2003;23(2):154–65.CrossRefPubMedGoogle Scholar
  58. 58.
    Tsai SY, Papadopoulos CM, Schwab ME, Kartje GL. Delayed anti-nogo-a therapy improves function after chronic stroke in adult rats. Stroke. 2011;42(1):186–90.CrossRefPubMedGoogle Scholar
  59. 59.
    Lindau NT, Banninger BJ, Gullo M, Good NA, Bachmann LC, Starkey ML, et al. Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti-Nogo-A therapy. Brain. 2014;137(Pt 3):739–56.CrossRefPubMedGoogle Scholar
  60. 60.
    Herz J, Reitmeir R, Hagen SI, Reinboth BS, Guo Z, Zechariah A, et al. Intracerebroventricularly delivered VEGF promotes contralesional corticorubral plasticity after focal cerebral ischemia via mechanisms involving anti-inflammatory actions. Neurobiol Dis. 2012;45(3):1077–85.CrossRefPubMedGoogle Scholar
  61. 61.
    Ruscher K, Kuric E, Liu Y, Walter HL, Issazadeh-Navikas S, Englund E, et al. Inhibition of CXCL12 signaling attenuates the postischemic immune response and improves functional recovery after stroke. J Cereb Blood Flow Metab. 2013;33(8):1225–34.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Liguz-Lecznar M, Zakrzewska R, Kossut M. Inhibition of Tnf-alpha R1 signaling can rescue functional cortical plasticity impaired in early post-stroke period. Neurobiol Aging. 2015;36(10):2877–84.CrossRefPubMedGoogle Scholar
  63. 63.
    Kriz J, Lalancette-Hebert M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol. 2009;117(5):497–509.CrossRefPubMedGoogle Scholar
  64. 64.
    Chen J, Zhang C, Jiang H, Li Y, Zhang L, Robin A, et al. Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab. 2005;25(2):281–90.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Reitmeir R, Kilic E, Kilic U, Bacigaluppi M, ElAli A, Salani G, et al. Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity. Brain. 2011;134(Pt 1):84–99.CrossRefPubMedGoogle Scholar
  66. 66.
    Mengozzi M, Cervellini I, Villa P, Erbayraktar Z, Gokmen N, Yilmaz O, et al. Erythropoietin-induced changes in brain gene expression reveal induction of synaptic plasticity genes in experimental stroke. Proc Natl Acad Sci U S A. 2012;109(24):9617–22.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Liguz-Lecznar M, Kossut M. Influence of inflammation on poststroke plasticity. Neural Plast. 2013;2013:258582.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Liebigt S, Schlegel N, Oberland J, Witte OW, Redecker C, Keiner S. Effects of rehabilitative training and anti-inflammatory treatment on functional recovery and cellular reorganization following stroke. Exp Neurol. 2012;233(2):776–82.CrossRefPubMedGoogle Scholar
  69. 69.
    Jablonka JA, Kossut M, Witte OW, Liguz-Lecznar M. Experience-dependent brain plasticity after stroke: effect of ibuprofen and poststroke delay. Eur J Neurosci. 2012;36(5):2632–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Su Q, Pu H, Hu C. Neuroprotection by combination of resveratrol and enriched environment against ischemic brain injury in rats. Neurol Res. 2016;38(1):60–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Wang J, Feng X, Du Y, Wang L, Zhang S. Combination treatment with progesterone and rehabilitation training further promotes behavioral recovery after acute ischemic stroke in mice. Restor Neurol Neurosci. 2013;31(4):487–99.PubMedGoogle Scholar
  72. 72.
    Chang HC, Yang YR, Wang PS, Wang RY. Quercetin enhances exercise-mediated neuroprotective effects in brain ischemic rats. Med Sci Sports Exerc. 2014;46(10):1908–16.CrossRefPubMedGoogle Scholar
  73. 73.
    Griva M, Lagoudaki R, Touloumi O, Nousiopoulou E, Karalis F, Georgiou T, et al. Long-term effects of enriched environment following neonatal hypoxia-ischemia on behavior, BDNF and synaptophysin levels in rat hippocampus: effect of combined treatment with G-CSF. Brain Res. 2017;1667:55.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ali Alawieh
    • 1
    • 2
  • Farris Langley
    • 1
    • 2
  • Stephen Tomlinson
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Microbiology and ImmunologyMedical University of South CarolinaCharlestonUSA
  2. 2.Medical Scientist Training ProgramMedical University of South CarolinaCharlestonUSA
  3. 3.Ralph H. Johnson VA Medical CenterCharlestonUSA
  4. 4.CharlestonUSA

Personalised recommendations