Neural Network Regeneration After Stroke

  • Norihito ShimamuraEmail author
  • Takeshi Katagai
  • Masato Naraoka
  • Hiroki Ohkuma
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Stroke remains a major cause of disability throughout the world: paralysis, cognitive impairment, aphasia, apraxia and so on. Surgical or medical intervention is curative in only a small number of cases. Stroke cases with morbidity require rehabilitation. Neurorehabilitation generally improves patient outcome, but the involved mechanisms have not been clarified. Recent advancements in technology are revealing the mechanisms of neurorehabilitation from the gene and up to neural network remodeling. Rehabilitation in clinical application, however, should be guided by convincing evidence. In this chapter we review the evidence for the regeneration of the neural network after stroke.


Cerebrovascular Mechanism Neural network Rehabilitation Reorganization Stroke 



Activities of daily living


American Heart Association


Adenosine monophosphate


Brain-derived neurotrophic factor


Blood oxygen level dependent


Caudal forelimb area


Constraint-induced movement therapy


Diffusion-tensor imaging


Fractional anisotropy


Functional magnetic resonance imaging


γ-Aminobutyric acid


Human bone marrow stromal cells




Multilineage differentiating stress enduring


Rostral forelimb area


Transcranial magnetic stimulation


United State of America


Vagal nerve stimulation



We thank Mark Inglin (University of Basel) for his editorial assistance.

Competing interests

We have no conflict of interest.


This work was supported by Grants-in-Aid for Scientific Research of Japan, grant number 26462149 for Norihito Shimamura.


  1. 1.
    Minister of Health LaW. Survey of patient. Tokyo: Minister of Health LaW; 2016.Google Scholar
  2. 2.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322.PubMedCrossRefGoogle Scholar
  3. 3.
    Brinjikji W, Lanzino G, Rabinstein AA, Kallmes DF, Cloft HJ. Age-related trends in the treatment and outcomes of ruptured cerebral aneurysms: a study of the nationwide inpatient sample 2001–2009. AmJ Neuroradiol. 2013;34(5):1022–7.CrossRefGoogle Scholar
  4. 4.
    Nieuwkamp DJ, Algra A, Blomqvist P, Adami J, Buskens E, Koffijberg H, et al. Excess mortality and cardiovascular events in patients surviving subarachnoid hemorrhage: a nationwide study in Sweden. Stroke. 2011;42(4):902–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Nieuwkamp DJ, Setz LE, Algra A, Linn FH, de Rooij NK, Rinkel GJ. Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol. 2009;8(7):635–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Forti P, Maioli F, Procaccianti G, Nativio V, Lega MV, Coveri M, et al. Independent predictors of ischemic stroke in the elderly: prospective data from a stroke unit. Neurology. 2013;80(1):29–38.PubMedCrossRefGoogle Scholar
  7. 7.
    Kammersgaard LP, Jorgensen HS, Reith J, Nakayama H, Pedersen PM, Olsen TS, et al. Short- and long-term prognosis for very old stroke patients. The Copenhagen Stroke Study. Age Ageing. 2004;33(2):149–54.PubMedCrossRefGoogle Scholar
  8. 8.
    Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. The influence of age on stroke outcome. The Copenhagen Stroke Study. Stroke. 1994;25(4):808–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Koh SH, Park HH. Neurogenesis in stroke recovery. Transl Stroke Res. 2017;8(1):3–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Knecht S, Rossmuller J, Unrath M, Stephan KM, Berger K, Studer B. Old benefit as much as young patients with stroke from high-intensity neurorehabilitation: cohort analysis. J Neurol Neurosurg Psychiatry. 2016;87(5):526–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Shimamura N, Matsuda N, Satou J, Nakano T, Ohkuma H. Early ambulation produces favorable outcome and nondemential state in aneurysmal subarachnoid hemorrhage patients older than 70 years of age. World Neurosurg. 2014;81(2):330–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Shimamura N, Naraoka M, Katagai T, Katayama K, Kakuta K, Matsuda N, et al. Analysis of factors that influence long-term independent living for elderly subarachnoid hemorrhage patients. World Neurosurg. 2016;90:504–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Ren H, Liu C, Li J, Yang R, Ma F, Zhang M, et al. Self-perceived burden in the young and middle-aged inpatients with stroke: a cross-sectional survey. Rehabil Nurs. 2016;41(2):101–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947.PubMedCrossRefGoogle Scholar
  16. 16.
    Group ATC, Bernhardt J, Langhorne P, Lindley RI, Thrift AG, Ellery F, et al. Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet. 2015;386(9988):46–55.CrossRefGoogle Scholar
  17. 17.
    Dromerick AW, Lang CE, Birkenmeier RL, Wagner JM, Miller JP, Videen TO, et al. Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology. 2009;73(3):195–201.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Dignam J, Copland D, McKinnon E, Burfein P, O'Brien K, Farrell A, et al. Intensive versus distributed aphasia therapy: a nonrandomized, parallel-group, dosage-controlled study. Stroke. 2015;46(8):2206–11.PubMedCrossRefGoogle Scholar
  19. 19.
    Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47(6):e98–e169.PubMedCrossRefGoogle Scholar
  20. 20.
    Shimamura N, Munakata A, Ohkuma H. Current management of subarachnoid hemorrhage in advanced age. Acta Neurochir Suppl. 2011;110(Pt 2):151–5.PubMedGoogle Scholar
  21. 21.
    Tolea MI, Galvin JE. Sarcopenia and impairment in cognitive and physical performance. Clin Interv Aging. 2015;10:663–71.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Wang L, Conner JM, Nagahara AH, Tuszynski MH. Rehabilitation drives enhancement of neuronal structure in functionally relevant neuronal subsets. Proc Natl Acad Sci U S A. 2016;113(10):2750–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Karsenty G, Olson Eric N. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell. 2016;164(6):1248–56.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65.PubMedCrossRefGoogle Scholar
  25. 25.
    Pedersen BK. Exercise-induced myokines and their role in chronic diseases. Brain Behav Immun. 2011;25(5):811–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Pedersen BK, Pedersen M, Krabbe KS, Bruunsgaard H, Matthews VB, Febbraio MA. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp Physiol. 2009;94(12):1153–60.PubMedCrossRefGoogle Scholar
  27. 27.
    Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi J, et al. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost. 2002;87(4):728–34.PubMedGoogle Scholar
  28. 28.
    Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, et al. The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PLoS One. 2016;11(9):e0163037.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52(7):1409–18.PubMedCrossRefGoogle Scholar
  30. 30.
    Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, et al. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus. 2009;19(10):951–61.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Horch HW, Kruttgen A, Portbury SD, Katz LC. Destabilization of cortical dendrites and spines by BDNF. Neuron. 1999;23(2):353–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Hairi NN, Cumming RG, Naganathan V, Handelsman DJ, Le Couteur DG, Creasey H, et al. Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the Concord Health and Ageing in Men Project. J Am Geriatr Soc. 2010;58(11):2055–62.PubMedCrossRefGoogle Scholar
  33. 33.
    Nourhashemi F, Andrieu S, Gillette-Guyonnet S, Reynish E, Albarede JL, Grandjean H, et al. Is there a relationship between fat-free soft tissue mass and low cognitive function? Results from a study of 7,105 women. J Am Geriatr Soc. 2002;50(11):1796–801.PubMedCrossRefGoogle Scholar
  34. 34.
    Shin HY, Kim SW, Kim JM, Shin IS, Yoon JS. Association of grip strength with dementia in a Korean older population. Int J Geriatr Psychiatry. 2012;27(5):500–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Sternang O, Reynolds CA, Finkel D, Ernsth-Bravell M, Pedersen NL, Dahl Aslan AK. Factors associated with grip strength decline in older adults. Age Ageing. 2015;44(2):269–74.PubMedCrossRefGoogle Scholar
  36. 36.
    Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. NeuroImage. 2011;55(3):1147–58.PubMedCrossRefGoogle Scholar
  37. 37.
    Gleichgerrcht E, Fridriksson J, Rorden C, Nesland T, Desai R, Bonilha L. Separate neural systems support representations for actions and objects during narrative speech in post-stroke aphasia. Neuroimage Clin. 2016;10:140–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Kiran S, Meier EL, Kapse KJ, Glynn PA. Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia. Front Hum Neurosci. 2015;9:316.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ripolles P, Rojo N, Grau-Sanchez J, Amengual JL, Camara E, Marco-Pallares J, et al. Music supported therapy promotes motor plasticity in individuals with chronic stroke. Brain Imaging Behav. 2015;10(4):1289–307.CrossRefGoogle Scholar
  40. 40.
    Sarkamo T, Ripolles P, Vepsalainen H, Autti T, Silvennoinen HM, Salli E, et al. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study. Front Hum Neurosci. 2014;8:245.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Lefebvre S, Dricot L, Laloux P, Gradkowski W, Desfontaines P, Evrard F, et al. Neural substrates underlying stimulation-enhanced motor skill learning after stroke. Brain. 2015;138(Pt 1):149–63.PubMedCrossRefGoogle Scholar
  42. 42.
    Yang W, Liu TT, Song XB, Zhang Y, Li ZH, Cui ZH, et al. Comparison of different stimulation parameters of repetitive transcranial magnetic stimulation for unilateral spatial neglect in stroke patients. J Neurol Sci. 2015;359(1–2):219–25.PubMedCrossRefGoogle Scholar
  43. 43.
    Sawaki L, Butler AJ, Leng X, Wassenaar PA, Mohammad YM, Blanton S, et al. Differential patterns of cortical reorganization following constraint-induced movement therapy during early and late period after stroke: a preliminary study. NeuroRehabilitation. 2014;35(3):415–26.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 2002;420(6917):788–94.PubMedCrossRefGoogle Scholar
  45. 45.
    Yang G, Pan F, Gan WB. Stably maintained dendritic spines are associated with lifelong memories. Nature. 2009;462(7275):920–4.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Nishibe M, Urban ET III, Barbay S, Nudo RJ. Rehabilitative training promotes rapid motor recovery but delayed motor map reorganization in a rat cortical ischemic infarct model. Neurorehabil Neural Repair. 2015;29(5):472–82.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA, Tennant K, et al. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 2009;462(7275):915–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wang L, Conner JM, Rickert J, Tuszynski MH. Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proc Natl Acad Sci U S A. 2011;108(6):2545–50.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gulati T, Won SJ, Ramanathan DS, Wong CC, Bodepudi A, Swanson RA, et al. Robust neuroprosthetic control from the stroke perilesional cortex. J Neurosci. 2015;35(22):8653–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Xerri C, Zennou-Azogui Y. Early and moderate sensory stimulation exerts a protective effect on perilesion representations of somatosensory cortex after focal ischemic damage. PLoS One. 2014;9(6):e99767.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Jones TA, Schallert T. Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage. Brain Res. 1992;581(1):156–60.PubMedCrossRefGoogle Scholar
  52. 52.
    Jones TA, Schallert T. Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci. 1994;14(4):2140–52.PubMedGoogle Scholar
  53. 53.
    Jones TA, Kleim JA, Greenough WT. Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic examination. Brain Res. 1996;733(1):142–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Kozlowski DA, James DC, Schallert T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci. 1996;16(15):4776–86.PubMedGoogle Scholar
  55. 55.
    Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24(5):1245–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Biernaskie J, Corbett D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci. 2001;21(14):5272–80.PubMedGoogle Scholar
  57. 57.
    Okabe N, Shiromoto T, Himi N, Lu F, Maruyama-Nakamura E, Narita K, et al. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke. Neuroscience. 2016;339:338–62.PubMedCrossRefGoogle Scholar
  58. 58.
    Shiromoto T, Okabe N, Lu F, Maruyama-Nakamura E, Himi N, Narita K, et al. The role of endogenous neurogenesis in functional recovery and motor map reorganization induced by rehabilitative therapy after stroke in rats. J Stroke Cerebrovasc Dis. 2017;26(2):260–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Winship IR, Murphy TH. Remapping the somatosensory cortex after stroke: insight from imaging the synapse to network. Neuroscientist. 2009;15(5):507–24.PubMedCrossRefGoogle Scholar
  60. 60.
    Herbert WJ, Powell K, Buford JA. Evidence for a role of the reticulospinal system in recovery of skilled reaching after cortical stroke: initial results from a model of ischemic cortical injury. Exp Brain Res. 2015;233(11):3231–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Baydin S, Gungor A, Tanriover N, Baran O, Middlebrooks EH, Rhoton AL Jr. Fiber tracts of the medial and inferior surfaces of the cerebrum. World Neurosurg. 2017;98:34–49.PubMedCrossRefGoogle Scholar
  62. 62.
    Fernandez-Miranda JC, Rhoton AL Jr, Alvarez-Linera J, Kakizawa Y, Choi C, de Oliveira EP. Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery. 2008;62(6 Suppl 3):989–1026. discussion 8PubMedGoogle Scholar
  63. 63.
    Kucukyuruk B, Yagmurlu K, Tanriover N, Uzan M, Rhoton AL Jr. Microsurgical anatomy of the white matter tracts in hemispherotomy. Neurosurgery. 2014;10(Suppl 2):305–24. discussion 24PubMedCrossRefGoogle Scholar
  64. 64.
    Rubino PA, Rhoton AL Jr, Tong X, Oliveira E. Three-dimensional relationships of the optic radiation. Neurosurgery. 2005;57(4 Suppl):219–27. discussion 27PubMedGoogle Scholar
  65. 65.
    Kraft E, Schaal MC, Lule D, Konig E, Scheidtmann K. The functional anatomy of motor imagery after sub-acute stroke. NeuroRehabilitation. 2015;36(3):329–37.PubMedCrossRefGoogle Scholar
  66. 66.
    Catani M, Ffytche DH. The rises and falls of disconnection syndromes. Brain. 2005;128(Pt 10):2224–39.PubMedCrossRefGoogle Scholar
  67. 67.
    Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage. 2002;17(1):77–94.PubMedCrossRefGoogle Scholar
  68. 68.
    Lee MH, Shin YI, Lee SH, Cha YJ, Kim DY, Han BS, et al. Diffusion tensor imaging to determine the potential motor network connectivity between the involved and non-involved hemispheres in stroke. Biomed Mater Eng. 2015;26(Suppl 1):S1447–53.PubMedGoogle Scholar
  69. 69.
    Feng W, Wang J, Chhatbar PY, Doughty C, Landsittel D, Lioutas VA, et al. Corticospinal tract lesion load: an imaging biomarker for stroke motor outcomes. Ann Neurol. 2015;78(6):860–70.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007;130(Pt 1):170–80.PubMedGoogle Scholar
  71. 71.
    Young BM, Stamm JM, Song J, Remsik AB, Nair VA, Tyler ME, et al. Brain-computer interface training after stroke affects patterns of brain-behavior relationships in corticospinal motor fibers. Front Hum Neurosci. 2016;10:457.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Stewart JC, Dewanjee P, Shariff U, Cramer SC. Dorsal premotor activity and connectivity relate to action selection performance after stroke. Hum Brain Mapp. 2016;37(5):1816–30.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fang Y, Han Z, Zhong S, Gong G, Song L, Liu F, et al. The semantic anatomical network: evidence from healthy and brain-damaged patient populations. Hum Brain Mapp. 2015;36(9):3499–515.PubMedCrossRefGoogle Scholar
  74. 74.
    Borstad AL, Choi S, Schmalbrock P, Nichols-Larsen DS. Frontoparietal white matter integrity predicts haptic performance in chronic stroke. Neuroimage Clin. 2016;10:129–39.PubMedCrossRefGoogle Scholar
  75. 75.
    Liu S, Guo J, Meng J, Wang Z, Yao Y, Yang J, et al. Abnormal EEG complexity and functional connectivity of brain in patients with acute thalamic ischemic stroke. Comput Math Methods Med. 2016;2016:2582478.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Lake EM, Chaudhuri J, Thomason L, Janik R, Ganguly M, Brown M, et al. The effects of delayed reduction of tonic inhibition on ischemic lesion and sensorimotor function. J Cereb Blood Flow Metab. 2015;35(10):1601–9.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hays SA, Ruiz A, Bethea T, Khodaparast N, Carmel JB, Rennaker RL II, et al. Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats. Neurobiol Aging. 2016;43:111–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Follesa P, Biggio F, Gorini G, Caria S, Talani G, Dazzi L, et al. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 2007;1179:28–34.PubMedCrossRefGoogle Scholar
  79. 79.
    Furmaga H, Carreno FR, Frazer A. Vagal nerve stimulation rapidly activates brain-derived neurotrophic factor receptor TrkB in rat brain. PLoS One. 2012;7(5):e34844.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Chen J, Tang YX, Liu YM, Chen J, Hu XQ, Liu N, et al. Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage. CNS Neurosci Ther. 2012;18(10):847–54.PubMedCrossRefGoogle Scholar
  81. 81.
    Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(Pt 6):1790–807.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Liang H, Yin Y, Lin T, Guan D, Ma B, Li C, et al. Transplantation of bone marrow stromal cells enhances nerve regeneration of the corticospinal tract and improves recovery of neurological functions in a collagenase-induced rat model of intracerebral hemorrhage. Mol Cells. 2013;36(1):17–24.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant. 2007;40(7):609–19.PubMedCrossRefGoogle Scholar
  84. 84.
    Qin J, Gong G, Sun S, Qi J, Zhang H, Wang Y, et al. Functional recovery after transplantation of induced pluripotent stem cells in a rat hemorrhagic stroke model. Neurosci Lett. 2013;554(0):70–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Qin J, Song B, Zhang H, Wang Y, Wang N, Ji Y, et al. Transplantation of human neuro-epithelial-like stem cells derived from induced pluripotent stem cells improves neurological function in rats with experimental intracerebral hemorrhage. Neurosci Lett. 2013;548(0):95–100.PubMedCrossRefGoogle Scholar
  86. 86.
    Yamauchi T, Kuroda Y, Morita T, Shichinohe H, Houkin K, Dezawa M, et al. Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One. 2015;10(3):e0116009.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Shichinohe H, Kuroda S, Sugiyama T, Ito M, Kawabori M, Nishio M, et al. Biological features of human bone marrow stromal cells (hBMSC) cultured with animal protein-free medium-safety and efficacy of clinical use for neurotransplantation. Transl Stroke Res. 2011;2(3):307–15.PubMedCrossRefGoogle Scholar
  88. 88.
    Auriat AM, Rosenblum S, Smith TN, Guzman R. Intravascular stem cell transplantation for stroke. Transl Stroke Res. 2011;2(3):250–65.PubMedCrossRefGoogle Scholar
  89. 89.
    Pendharkar AV, Chua JY, Andres RH, Wang N, Gaeta X, Wang H, et al. Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia. Stroke. 2010;41(9):2064–70.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ito M, Kuroda S, Sugiyama T, Shichinohe H, Takeda Y, Nishio M, et al. Validity of bone marrow stromal cell expansion by animal serum-free medium for cell transplantation therapy of cerebral infarct in rats-a serial MRI study. Transl Stroke Res. 2011;2(3):294–306.PubMedCrossRefGoogle Scholar
  91. 91.
    Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, et al. Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells. 2016;34(1):160–73.PubMedCrossRefGoogle Scholar
  92. 92.
    Uchida H, Niizuma K, Kushida Y, Wakao S, Tominaga T, Borlongan CV, et al. Human muse cells reconstruct neuronal circuitry in subacute lacunar stroke model. Stroke. 2017;48(2):428–35.PubMedCrossRefGoogle Scholar
  93. 93.
    Shimamura N, Kakuta K, Wang L, Naraoka M, Uchida H, Wakao S, et al. Neuro-regeneration therapy using human muse cells is highly effective in a mouse intracerebral hemorrhage model. Exp Brain Res. 2017;235(2):565–72.PubMedCrossRefGoogle Scholar
  94. 94.
    Kokaia Z, Darsalia V. Neural stem cell-based therapy for ischemic stroke. Transl Stroke Res. 2011;2(3):272–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Norihito Shimamura
    • 1
    Email author
  • Takeshi Katagai
    • 1
  • Masato Naraoka
    • 1
  • Hiroki Ohkuma
    • 1
  1. 1.Department of NeurosurgeryHirosaki University Graduate School of MedicineHirosakiJapan

Personalised recommendations