Skip to main content

Integrating Molecular, Cellular, and Systems Approaches to Repairing the Brain After Stroke

  • Chapter
  • First Online:
Cellular and Molecular Approaches to Regeneration and Repair

Abstract

A stroke implies a sudden and spontaneous onset of neurological symptoms due to a vascular insult. Despite the brain’s inherent capacity for plasticity and spontaneous improvement, strokes still leave many patients with devastating deficits that can permanently affect independence and quality of life. This chapter focuses on ways to help restore the functionality of the central nervous system (CNS) after this type of injury. Understanding how neurons interact on both individual (i.e. cellular and molecular) and population (i.e. synapses and circuits) levels is crucial to developing successful restorative strategies, as is appreciating how these interactions change over the injury-recovery timeline. The CNS has several characteristics that make its restitution exceptionally difficult; beyond even its incredible intricacy, its parenchymal cells, or neurons, do not regenerate well after injury, and this damaged neuronal substrate embodies a consciousness system that must be engaged in its own recovery. In fact, there is now data suggesting that conscious intention, often invoked through goal-oriented rehabilitation, plays a crucial role in facilitating functional plasticity and long-range axonal sprouting. To capitalize on this principle, neural interfaces and electrical stimulation strategies are being integrated into rehabilitation paradigms to provide critically-timed feedback that can reinvigorate injured circuits. Combining these approaches with interventions at the cellular and molecular level (e.g. immunological or genetic modulations aimed at promoting neuronal outgrowth, or stem cells that can replace damaged parenchyma) has the chance to improve neurological recovery to back toward baseline levels. Ultimately, because cells of the CNS do not regrow on their own, and because regrowth and synapse formation does not necessarily ensure restoration of function, harmonious application of synergistic approaches at both the micro- and macroscopic levels will be needed to establish long-lasting functional plasticity and meaningful recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AP:

Action potential

BCI:

Brain-computer interface

BCM:

Bienenstock–Cooper–Munro

BMI:

Brain-machine interface

BSDS:

Brain state dependent stimulation

cAMP:

Cyclic adenosine monophosphate

CIMT:

Constraint-induced movement therapy

CNS:

Central nervous system

CNTF:

Ciliary neurotrophic factor

CPP:

Cerebral perfusion pressure

CSPG:

Chondroitin sulfate proteoglycans

DBS:

Deep brain stimulation

DOC:

Disorder of consciousness

DRG:

Dorsal root ganglion

FDA:

Federal Drug Administration

FES:

Functional electrical stimulation

GABA:

Gamma-aminobutyric acid

GAP43:

Growth associated protein 43

GDF10:

Growth and differentiation factor 10

ICA:

Internal carotid artery

ICP:

Intracranial pressure

IFG-1:

Insulin-like growth factor 1

LTD:

Long-term depression

LTP:

Long-term potentiation

M1:

Primary motor cortex

MAG:

Myelin-associated

MAI:

Myelin-associated inhibitory molecule

MCA:

Middle cerebral artery

mTOR:

Mechanistic target of rapamycin

NgR:

Nogo receptor

NMDA:

N-Methyl-d-aspartate

NSAID:

Non-steroidal anti-inflammatory drug

OMgp:

Oligodendrocyte-myelin glycoprotein

OPN:

Osteopontin

PAS:

Paired associative stimulation

PMC:

Premotor cortices

PTEN:

Phosphatase and tensin homolog

RGC:

Retinal ganglion cell

rTMS:

Repetitive transcranial magnetic stimulation

SCI:

Spinal cord injury

SGZ:

Subgranular zone

STDP:

Spike-timing dependent plasticity

SVZ:

Subventricular zone

TGF-β:

Transforming growth factor beta

TGFβR:

Transforming growth factor beta receptor

TMS:

Transcranial magnetic stimulation

References

  1. Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci. 2004;22:281–99.

    PubMed  Google Scholar 

  2. Christophe BR, Mehta SH, Garton ALA, Sisti J, Connolly ES. Current and future perspectives on the treatment of cerebral ischemia. Expert Opin Pharmacother. 2017;18:573–80.

    Article  CAS  PubMed  Google Scholar 

  3. Członkowska A, Leśniak M. Pharmacotherapy in stroke rehabilitation. Expert Opin Pharmacother. 2009;10:1249–59.

    Article  PubMed  CAS  Google Scholar 

  4. Winstein CJ, et al. AHA/ASA guideline guidelines for adult stroke rehabilitation and recovery. Stroke. 2016;47:e98–e169.

    Article  PubMed  Google Scholar 

  5. Alia C, et al. Neuroplastic changes following brain ischemia and their contribution to stroke recovery: novel approaches in neurorehabilitation. Front Cell Neurosci. 2017;11:1–22.

    Article  Google Scholar 

  6. Hermann DM, Chopp M. Promoting neurological recovery in the post-acute stroke phase: Benefits and challenges. Eur Neurol. 2014;72:317–25.

    Article  PubMed  Google Scholar 

  7. Corbett D, Nguemeni C, Gomez-Smith M. How can you mend a broken brain? Neurorestorative approaches to stroke recovery. Cerebrovasc Dis. 2014;38:233–9.

    Article  PubMed  Google Scholar 

  8. Fishman HM, Bittner GD. Vesicle-mediated restoration of a plasmalemmal barrier in severed axons. News Physiol Sci. 2003;18:115–8.

    PubMed  Google Scholar 

  9. Schlaepfer WW, Bunge RP. Effects of calcium ion concentration on the degeneration of amputated axons in tissue culture. J Cell Biol. 1973;59:456–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hill CE, Beattie MS, Bresnahan JC. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp Neurol. 2001;171:153–69.

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Raisman G. Sprouts from cut corticospinal axons persist in the presence of astrocytic scarring in long-term lesions of the adult rat spinal cord. Exp Neurol. 1995;134:102–11.

    Article  CAS  PubMed  Google Scholar 

  12. Shetty AK, Turner DA. Aging impairs axonal sprouting response of dentate granule cells following target loss and partial deafferentation. J Comp Neurol. 1999;414:238–54.

    Article  CAS  PubMed  Google Scholar 

  13. Conforti L, Gilley J, Coleman MP. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci. 2014;15:394–409.

    Article  CAS  PubMed  Google Scholar 

  14. Benowitz LI, Yin Y. Combinatorial treatments for promoting axon regeneration in the CNS: strategies for overcoming inhibitory signals and activating neurons’ intrinsic growth state. Dev Neurobiol. 2007;67:1148–65.

    Article  CAS  PubMed  Google Scholar 

  15. Bernstein DR, Stelzner DJ. Plasticity of the corticospinal tract following midthoracic spinal injury in the postnatal rat. J Comp Neurol. 1983;221:382–400.

    Article  CAS  PubMed  Google Scholar 

  16. Bulinski JC, et al. Changes in dendritic structure and function following hippocampal lesions: Correlations with developmental events? Prog Neurobiol. 1998;55:641–50.

    Article  CAS  PubMed  Google Scholar 

  17. Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice. Nature. 2000;405:951–5.

    Article  CAS  PubMed  Google Scholar 

  18. Shetty AK, Turner DA. Enhanced cell survival in fetal hippocampal suspension transplants grafted to adult rat hippocampus following kainate lesions: a three-dimensional graft reconstruction study. Neuroscience. 1995;67:561–82.

    Article  CAS  PubMed  Google Scholar 

  19. Alvarez-Buylla A, Lim D. For the long run: maintaining germinal niches in the adult brain. Neuron. 2004;41:683–6.

    Article  CAS  PubMed  Google Scholar 

  20. Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97:703–16.

    Article  CAS  PubMed  Google Scholar 

  21. Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci U S A. 2000;97:13883–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohab JJ, Carmichael ST. Poststroke neurogenesis: emerging principles of migration and localization of immature neurons. Neuroscientist. 2008;14:369–80.

    Article  CAS  PubMed  Google Scholar 

  23. Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci. 2001;21:7153–60.

    CAS  PubMed  Google Scholar 

  24. Shetty A, Turner D. Fetal hippocampal cells grafted to kainate-lesioned CA3 region of adult hippocampus suppress aberrant supragranular sprouting of host mossy fibers. Exp Neurol. 1997;143:231–45.

    Article  CAS  PubMed  Google Scholar 

  25. Thored P, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24:739–47.

    Article  CAS  PubMed  Google Scholar 

  26. Macas J, Nern C, Plate KH, Momma S. Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci. 2006;26:13114–9.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang RL, Zhang ZG, Zhang L, Chopp M. Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience. 2001;105:33–41.

    Article  CAS  PubMed  Google Scholar 

  28. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8:963–70.

    Article  CAS  PubMed  Google Scholar 

  29. Carmichael ST, et al. Growth-associated gene expression after stroke: Evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol. 2005;193:291–311.

    Article  CAS  PubMed  Google Scholar 

  30. Grenningloh G, Soehrman S, Bondallaz P, Ruchti E, Cadas H. Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. J Neurobiol. 2004;58:60–9.

    Article  CAS  PubMed  Google Scholar 

  31. Sun F, He Z. Neuronal intrinsic barriers for axon regeneration in the adult CNS. Curr Opin Neurobiol. 2010;20:510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tedeschi A. Tuning the orchestra: transcriptional pathways controlling axon regeneration. Front Mol Neurosci. 2011;4:60.

    PubMed  Google Scholar 

  33. Park KK, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science. 2008;322:963–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Lima S, et al. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci. 2012;109:9149–54.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smith PD, et al. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron. 2009;64:617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu B, Xie X. Neurotrophic factor control of satiety and body weight. Nat Rev Neurosci. 2016;17:282–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen D, Schneider G, Martinou J, Tonegawa S. Bcl-2 promotes regeneration of severed axons in mammalian CNS. Nature. 1997;385:434–9.

    Article  CAS  PubMed  Google Scholar 

  38. Goldberg JL, et al. Retinal ganglion cells do not extend axons by default. Neuron. 2002;33:689–702.

    Article  CAS  PubMed  Google Scholar 

  39. Benowitz LI, Carmichael ST. Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis. 2010;37:259–66.

    Article  PubMed  Google Scholar 

  40. Omura T, et al. Robust axonal regeneration occurs in the injured CAST/Ei mouse CNS. Neuron. 2015;86:1215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Lima S, Habboub G, Benowitz LI. Combinatorial therapy stimulates long-distance regeneration, target reinnervation, and partial recovery of vision after optic nerve injury in mice. Int Rev Neurobiol. 2012;106:153–72.

    Article  PubMed  CAS  Google Scholar 

  42. Krucoff MO, Rahimpour S, Slutzky MW, Edgerton VR, Turner DA. Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation. Front Neurosci. 2016;10

    Google Scholar 

  43. Alilain W, Horn KP, Hu H, Dick TE, Silver J. Functional regeneration of respiratory pathways after spinal cord injury. Nature. 2011;475:196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu K, Tedeschi A, Park KK, He Z. Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci. 2011;34:131–52.

    Article  PubMed  CAS  Google Scholar 

  45. Dickendesher TL, et al. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci. 2012;15:703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee J-K, Kim J-E, Sivula M, Strittmatter SM. Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J Neurosci. 2004;24:6209–17.

    Article  CAS  PubMed  Google Scholar 

  47. Freund P, et al. Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med. 2006;12:790–2.

    Article  CAS  PubMed  Google Scholar 

  48. Maier IC, et al. Differential effects of anti-Nogo-A antibody treatment and treadmill training in rats with incomplete spinal cord injury. Brain. 2009;132:1426–40.

    Article  PubMed  Google Scholar 

  49. Wahl AS, et al. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science. 2014;344:1250–5.

    Article  CAS  PubMed  Google Scholar 

  50. Bei F, et al. Restoration of visual function by enhancing conduction in regenerated axons. Cell. 2016;164:219–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li S, et al. GDF10 is a signal for axonal sprouting and functional recovery after stroke. Nat Neurosci. 2015;18:1737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26:2135–44.

    Article  CAS  PubMed  Google Scholar 

  53. Schaechter JD, Moore CI, Connell BD, Rosen BR, Dijkhuizen RM. Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain. 2006;129:2722–33.

    Article  PubMed  Google Scholar 

  54. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10:861–72.

    Article  CAS  PubMed  Google Scholar 

  55. Zai L, et al. Inosine alters gene expression and axonal projections in neurons contralateral to a cortical infarct and improves skilled use of the impaired limb. J Neurosci. 2009;29:8187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zai L, et al. Inosine augments the effects of a Nogo receptor blocker and of environmental enrichment to restore skilled forelimb use after stroke. J Neurosci. 2011;31:5977–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim D, et al. Inosine enhances axon sprouting and motor recovery after spinal cord injury. PLoS One. 2013;8:15–21.

    Article  CAS  Google Scholar 

  58. Chen P, et al. Inosine induces axonal rewiring and behavioral outcome after stroke. PNAS. 2002;99:9031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dachir S, et al. Inosine improves functional recovery after experimental traumatic brain injury. Brain Res. 2014;1555:78–88.

    Article  CAS  PubMed  Google Scholar 

  60. Baldwin KT, Carbajal KS, Segal BM, Giger RJ. Neuroinflammation triggered by β-glucan/dectin-1 signaling enables CNS axon regeneration. Proc Natl Acad Sci U S A. 2015;112:2581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Benowitz LI, Popovich PG. Inflammation and axon regeneration. Curr Opin Neurol. 2011;24:577–83.

    Article  CAS  PubMed  Google Scholar 

  62. Kurimoto T, et al. Neutrophils express oncomodulin and promote optic nerve regeneration. J Neurosci. 2013;33:14816–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yin Y, et al. Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci. 2003;23:2284–93.

    CAS  PubMed  Google Scholar 

  64. Yin Y, et al. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci. 2006;9:843–52.

    Article  CAS  PubMed  Google Scholar 

  65. Yin Y, et al. Oncomodulin links inflammation to optic nerve regeneration. Proc Natl Acad Sci U S A. 2009;106:19587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Benowitz L, Yin Y. Rewiring the injured CNS: lessons from the optic nerve. Exp Neurol. 2008;209:389–98.

    Article  CAS  PubMed  Google Scholar 

  67. Napieralski JA, Butler AK, Chesselet MF. Anatomical and functional evidence for lesion-specific sprouting of corticostriatal input in the adult rat. J Comp Neurol. 1996;373:484–97.

    Article  CAS  PubMed  Google Scholar 

  68. Nudo RJ. Recovery after brain injury: mechanisms and principles. Front Hum Neurosci. 2013;7:887.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377:1693–702.

    Article  PubMed  Google Scholar 

  70. Teasell RW, Murie Fernandez M, McIntyre A, Mehta S. Rethinking the continuum of stroke rehabilitation. Arch Phys Med Rehabil. 2014;95:595–6.

    Article  PubMed  Google Scholar 

  71. DeFina PA, et al. Improving outcomes of severe disorders of consciousness. Restor Neurol Neurosci. 2010;28:769–80.

    PubMed  Google Scholar 

  72. Breceda EY, Dromerick AW. Motor rehabilitation in stroke and traumatic brain injury: stimulating and intense. Curr Opin Neurol. 2013;26:595–601.

    Article  PubMed  Google Scholar 

  73. Krieger DW. Therapeutic drug approach to stimulate clinical recovery after brain injury. Front Neurol Neurosci. 2013;32:76–87.

    Article  PubMed  Google Scholar 

  74. Dobkin BH. Behavioral, temporal, and spatial targets for cellular transplants as adjuncts to rehabilitation for stroke. Stroke. 2007;38:832–9.

    Article  PubMed  Google Scholar 

  75. Cote DJ, et al. Ethical clinical translation of stem cell interventions for neurologic disease. Neurology. 2017;88(3):322–8. https://doi.org/10.1212/WNL.0000000000003506.

    Article  PubMed  Google Scholar 

  76. Smith EJ, et al. Implantation site and lesion topology determine efficacy of a human neural stem cell line in a rat model of chronic stroke. Stem Cells. 2012;30:785–96.

    Article  CAS  PubMed  Google Scholar 

  77. Wang Q, et al. Effect of stem cell-based therapy for ischemic stroke treatment: a meta-analysis. Clin Neurol Neurosurg. 2016;146:1–11.

    Article  PubMed  Google Scholar 

  78. Moniche F, et al. Intra-arterial bone marrow mononuclear cells (BM-MNCs) transplantation in acute ischemic stroke (IBIS trial): protocol of a phase II, randomized, dose-finding, controlled multicenter trial. Int J Stroke. 2015;10:1149–52.

    Article  PubMed  Google Scholar 

  79. Steinberg GK, et al. Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke. 2016;47:1817–24.

    Article  PubMed  Google Scholar 

  80. Tornero D, et al. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain. 2017;140:692–706.

    PubMed  Google Scholar 

  81. DeFina P, et al. The new neuroscience frontier: promoting neuroplasticity and brain repair in traumatic brain injury. Clin Neuropsychol. 2009;23:1391–9.

    Article  PubMed  Google Scholar 

  82. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Bernabeu M, Tormos JM, Pascual-Leone A. Noninvasive brain stimulation in traumatic brain injury. J Head Trauma Rehabil. 2012;27:274–92.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nahmani M, Turrigiano GG. Adult cortical plasticity following injury: recapitulation of critical period mechanisms? Neuroscience. 2014;283:4–16.

    Article  CAS  PubMed  Google Scholar 

  84. Villamar MF, Santos Portilla A, Fregni F, Zafonte R. Noninvasive brain stimulation to modulate neuroplasticity in traumatic brain injury. Neuromodulation. 2012;15:326–37.

    Article  PubMed  Google Scholar 

  85. Dancause N, Nudo R. Shaping plasticity to enhance recovery after injury. Prog Brain Res. 2011;192:273–95.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Dancause N. Extensive cortical rewiring after brain injury. J Neurosci. 2005;25:10167–79.

    Article  CAS  PubMed  Google Scholar 

  87. Kantak SS, Stinear JW, Buch ER, Cohen LG. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabil Neural Repair. 2012;26:282–92.

    Article  PubMed  Google Scholar 

  88. Carmichael ST, Chesselet M-F. Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J Neurosci. 2002;22:6062–70.

    CAS  PubMed  Google Scholar 

  89. Favre I, et al. Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis. Stroke. 2014;45:1077–83.

    Article  PubMed  Google Scholar 

  90. Kuner R. Central mechanisms of pathological pain. Nat Med. 2010;16:1258–66.

    Article  CAS  PubMed  Google Scholar 

  91. Thickbroom GW, Mastaglia FL. Plasticity in neurological disorders and challenges for noninvasive brain stimulation (NBS). J Neuroeng Rehabil. 2009;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Flor H, et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature. 1995;375:482–4.

    Article  CAS  PubMed  Google Scholar 

  93. Teyler TJ, Morgan SL, Russell RN, Woodside BL. Synaptic plasticity and secondary epileptogenesis. Int Rev Neurobiol. 2001;45:253–67.

    Article  CAS  PubMed  Google Scholar 

  94. Hasan A, et al. Dysfunctional long-term potentiation-like plasticity in schizophrenia revealed by transcranial direct current stimulation. Behav Brain Res. 2011;224:15–22.

    Article  PubMed  Google Scholar 

  95. Quartarone A, Rizzo V, Morgante F. Clinical features of dystonia: a pathophysiological revisitation. Curr Opin Neurol. 2008;21:484–90.

    Article  PubMed  Google Scholar 

  96. Dimitrijević MR, Nathan PW. Studies of spasticity in man. I Some features of spasticity. Brain. 1967;90:1–30.

    Article  PubMed  Google Scholar 

  97. Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci. 2002;3:228–36.

    Article  CAS  PubMed  Google Scholar 

  98. Taub E, Morris DM. Constraint-induced movement therapy to enhance recovery after stroke. Curr Atheroscler Rep. 2001;3:279–86.

    Article  CAS  PubMed  Google Scholar 

  99. Allred RP, Maldonado MA, Hsu And JE, Jones TA. Training the less-affected forelimb after unilateral cortical infarcts interferes with functional recovery of the impaired forelimb in rats. Restor Neurol Neurosci. 2005;23:297–302.

    CAS  PubMed  Google Scholar 

  100. Allred RP, Jones TA. Maladaptive effects of learning with the less-affected forelimb after focal cortical infarcts in rats. Exp Neurol. 2008;210:172–81.

    Article  PubMed  Google Scholar 

  101. Kozlowski DA, James DC, Schallert T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci. 1996;16:4776–86.

    CAS  PubMed  Google Scholar 

  102. Wolf SL, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. 2006;296:2095–104.

    Article  CAS  PubMed  Google Scholar 

  103. Dromerick AW, et al. Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology. 2009;73:195–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McIntyre A, et al. Systematic review and meta-analysis of constraint-induced movement therapy in the hemiparetic upper extremity more than six months post stroke. Top Stroke Rehabil. 2012;19:499–513.

    Article  PubMed  Google Scholar 

  105. Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28:549–55.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Clarkson AN, et al. AMPA receptor-induced local brain-derived neurotrophic factor signaling mediates motor recovery after stroke. J Neurosci. 2011;31:3766–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Levy RM, et al. Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. J Neurosurg. 2008;108:707–14.

    Article  PubMed  Google Scholar 

  108. Levy RM, et al. Epidural electrical stimulation for stroke rehabilitation: results of the prospective, multicenter, randomized, single-blinded everest trial. Neurorehabil Neural Repair. 2016;30:107–19.

    Article  PubMed  Google Scholar 

  109. Guggenmos DJ, et al. Restoration of function after brain damage using a neural prosthesis. Proc Natl Acad Sci U S A. 2013;110:21177–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kleim JA, et al. Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult. Neurol Res. 2003;25:789–93.

    Article  PubMed  Google Scholar 

  111. Plautz EJ, et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res. 2003;25:801–10.

    Article  PubMed  Google Scholar 

  112. Nudo RJ, Milliken GW. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol. 1996;75:2144–9.

    CAS  PubMed  Google Scholar 

  113. Shin S, Dixon E, Okonkwo D, Richardson M. Neurostimulation for traumatic brain injury. J Neurosurg. 2014;121:1219–31.

    Article  PubMed  Google Scholar 

  114. Nudo RJ, Jenkins WM, Merzenich MM. Repetitive microstimulation alters the cortical representation of movements in adult rats. Somatosens Mot Res. 1990;7:463–83.

    Article  CAS  PubMed  Google Scholar 

  115. Monfils M-H, VandenBerg PM, Kleim JA, Teskey GC. Long-term potentiation induces expanded movement representations and dendritic hypertrophy in layer V of rat sensorimotor neocortex. Cereb Cortex. 2004;14:586–93.

    Article  PubMed  Google Scholar 

  116. Elsner B, Kugler J, Pohl M, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke. Cochrane Database Syst Rev. 2016;3:CD009645. https://doi.org/10.1002/14651858.CD009645.pub3.

    PubMed  Google Scholar 

  117. Edwardson MA, Lucas TH, Carey JR, Fetz EE. New modalities of brain stimulation for stroke rehabilitation. Exp Brain Res. 2013;224:335–58.

    Article  CAS  PubMed  Google Scholar 

  118. Gharabaghi A, et al. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation. Front Hum Neurosci. 2014;8:122.

    PubMed  PubMed Central  Google Scholar 

  119. Hebb DO. The organization of behavior: a neuropsychological theory. Hoboken, NJ: Wiley; 1949.

    Google Scholar 

  120. Cooper SJ. Donald O. Hebb’s synapse and learning rule: a history and commentary. Neurosci Biobehav Rev. 2005;28:851–74.

    Article  PubMed  Google Scholar 

  121. Rebesco JM, Miller LE. Enhanced detection threshold for in vivo cortical stimulation produced by Hebbian conditioning. J Neural Eng. 2011;8:16011.

    Article  Google Scholar 

  122. Purves D, et al. Neuroscience. In: Neuroscience. Sunderland, MA: Sinauer Associates; 2008.

    Google Scholar 

  123. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.

    CAS  PubMed  Google Scholar 

  124. Cooper LN, Bear MF. The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat Rev Neurosci. 2012;13:798–810.

    Article  CAS  PubMed  Google Scholar 

  125. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123(Pt 3):572–84.

    Article  PubMed  Google Scholar 

  126. Carson RG, Kennedy NC. Modulation of human corticospinal excitability by paired associative stimulation. Front Hum Neurosci. 2013;7:823.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kobayashi M, Pascual-Leone A. Basic principles of magnetic stimulation. Lancet. 2003;2:145–56.

    Article  PubMed  Google Scholar 

  128. Daly JJ, et al. A randomized controlled trial of functional neuromuscular stimulation in chronic stroke subjects. Stroke. 2006;37:172–8.

    Article  PubMed  Google Scholar 

  129. Kafri M, Laufer Y. Therapeutic effects of functional electrical stimulation on gait in individuals post-stroke. Ann Biomed Eng. 2015;43:451–66.

    Article  PubMed  Google Scholar 

  130. van den Brand R, et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science. 2012;336:1182–5.

    Article  PubMed  CAS  Google Scholar 

  131. Mothe AJ, Tator CH. Advances in stem cell therapy for spinal cord injury. Thew J Clin Investig. 2012;122:3824–34.

    Article  CAS  Google Scholar 

  132. Warren Olanow C, et al. Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann Neurol. 2015;78:248–57.

    Article  CAS  PubMed  Google Scholar 

  133. Jarvis S, Schultz SR. Prospects for optogenetic augmentation of brain function. Front Syst Neurosci. 2015;9:157.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Furlanetti LL, et al. Continuous high-frequency stimulation of the subthalamic nucleus improves cell survival and functional recovery following dopaminergic cell transplantation in rodents. Neurorehabil Neural Repair. 2015;29:1001–12.

    Article  PubMed  Google Scholar 

  135. Winstein CJ, et al. Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. JAMA. 2016;315:571–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Brogaard B, Gatzia DE. What can neuroscience tell us about the hard problem of consciousness? Front Neurosci. 2016;10:1–4.

    Article  Google Scholar 

  137. Koch C, Massimini M, Boly M, Tononi G. Neural correlates of consciousness: progress and problems. Nat Rev Neurosci. 2016;17:307–21.

    Article  CAS  PubMed  Google Scholar 

  138. Sandberg K, Frässle S, Pitts M. Future directions for identifying the neural correlates of consciousness. Nat Rev Neurosci. 2016. https://doi.org/10.1038/nrn.2016.104.

Download references

Conflict of Interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max O. Krucoff M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krucoff, M.O. et al. (2018). Integrating Molecular, Cellular, and Systems Approaches to Repairing the Brain After Stroke. In: Lapchak, P., Zhang, J. (eds) Cellular and Molecular Approaches to Regeneration and Repair. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-66679-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66679-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66678-5

  • Online ISBN: 978-3-319-66679-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics