Advertisement

Extra-Cellular Vesicles: A Promising Approach for Translating Cell-Based Therapy

  • Benjamin Buller
  • Michael Chopp
  • Zheng Gang ZhangEmail author
Chapter
  • 809 Downloads
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

As cell-based therapies have demonstrated efficacy in the treatment of experimental and clinical stroke, their mechanisms of action warrant intense investigation and are being investigated in greater depth. It is becoming increasingly clear that one of the main ways that cell therapies based on mesenchymal stem cells (MSC) and other cells impart functional benefits to animals is through release of exosomes and other extracellular vesicles in vivo. Mounting evidence shows that MSCs release exosomes, and that these exosomes induce predictable and impactful changes in recipient cells. These exosome-induced cellular changes are likely mediated through the content of the exosomes, which comprise mRNA, miRNA, proteins, and other macromolecules. Many studies that have been published in the last several years have shown that treatment of animals with exosomes, harvested from MSCs and other cells, after stroke and traumatic brain injury (TBI) recapitulate the effect of the parent cells. Exosomes lack the safety and manufacturability issues that plague cell therapy, and they therefore may represent the next generation of cell-free therapies. Their biology and potential use as therapies for CNS injuries are discussed herein.

Keywords

MSC Stroke TBI Exosome Microvesicle Extracellular vesicle Neuroresoration 

Abbreviations

Ago2

Argonaute-2

Ang1

Angiopoietin-1

BBB

Blood-brain barrier

CSF

Cerebral-spinal fluid

dll4

Delta-like 4

EV

Extracellular vesicle

lncRNA

Long non-coding RNA

MCAo

Middle cerebral artery occlusion

miRNA

MicroRNA

MSC

Mesenchymal stem/stromal cell

MVB

Multivesicular body

RISC

RNA-induced silencing complex

TBI

Traumatic brain injury

References

  1. 1.
    Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci. 2001;189(1-2):49–57.PubMedCrossRefGoogle Scholar
  3. 3.
    Li Y, Chen J, Wang L, Lu M, Chopp M. Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology. 2001;56(12):1666–72.PubMedCrossRefGoogle Scholar
  4. 4.
    Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73(6):778–86.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther. 2004;9(2):189–97.PubMedCrossRefGoogle Scholar
  7. 7.
    Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11(1):96–104.PubMedCrossRefGoogle Scholar
  8. 8.
    Hanabusa K, Nagaya N, Iwase T, Itoh T, Murakami S, Shimizu Y, et al. Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke. 2005;36(4):853–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu YP, Seckin H, Izci Y, Du ZW, Yan YP, Baskaya MK. Neuroprotective effects of mesenchymal stem cells derived from human embryonic stem cells in transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2009;29(4):780–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Lin YC, Ko TL, Shih YH, Lin MY, Fu TW, Hsiao HS, et al. Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke. 2011;42(7):2045–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Mohamad O, Drury-Stewart D, Song M, Faulkner B, Chen D, Yu SP, et al. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice. PLoS One. 2013;8(5):e64160.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, et al. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther. 2013;4(3):73.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002;1(2):92–100.PubMedCrossRefGoogle Scholar
  14. 14.
    Bhalala OG. The emerging impact of microRNAs in neurotrauma pathophysiology and therapy. In: Kobeissy FH, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Boca Raton, FL: Frontiers in Neuroengineering; 2015.Google Scholar
  15. 15.
    Maas SL, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27(3):172–88.PubMedCrossRefGoogle Scholar
  16. 16.
    Zocco D, Ferruzzi P, Cappello F, Kuo WP, Fais S. Extracellular vesicles as shuttles of tumor biomarkers and anti-tumor drugs. Front Oncol. 2014;4:267.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cheow ES, Cheng WC, Lee CN, de Kleijn D, Sorokin V, Sze SK. Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury. Mol Cell Proteomics. 2016;15(8):2628–40.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Foster BP, Balassa T, Benen TD, Dominovic M, Elmadjian GK, Florova V, et al. Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Crit Rev Clin Lab Sci. 2016;53(6):379–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9:86.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Choi DS, Park JO, Jang SC, Yoon YJ, Jung JW, Choi DY, et al. Proteomic analysis of microvesicles derived from human colorectal cancer ascites. Proteomics. 2011;11(13):2745–51.PubMedCrossRefGoogle Scholar
  21. 21.
    Rak J. Extracellular vesicles - biomarkers and effectors of the cellular interactome in cancer. Front Pharmacol. 2013;4:21.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem. 2014;289(32):22258–67.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Vader P, Breakefield XO, Wood MJ. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med. 2014;20(7):385–93.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics. 2010;9(6):1085–99.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113(8):E968–77.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Mrvar-Brecko A, Sustar V, Jansa V, Stukelj R, Jansa R, Mujagic E, et al. Isolated microvesicles from peripheral blood and body fluids as observed by scanning electron microscope. Blood Cells Mol Dis. 2010;44(4):307–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Bruno S, Tapparo M, Collino F, Chiabotto G, Deregibus MC, Soares Lindoso R, et al. Renal regenerative potential of different extra-cellular vesicle populations derived from bone marrow mesenchymal stromal cells. Tissue Eng Part A. 2017;PMID:28471327.Google Scholar
  29. 29.
    Akyurekli C, Le Y, Richardson RB, Fergusson D, Tay J, Allan DS. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev. 2015;11(1):150–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711–5.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856–67.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ge Q, Zhou Y, Lu J, Bai Y, Xie X, Lu Z. miRNA in plasma exosome is stable under different storage conditions. Molecules. 2014;19(2):1568–75.PubMedCrossRefGoogle Scholar
  33. 33.
    Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, et al. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. 2007;27(10):1684–91.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Xin H, Li Y, Shen LH, Liu X, Wang X, Zhang J, et al. Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One. 2010;5(2):e9027.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    van Velthoven CT, Kavelaars A, Heijnen CJ. Mesenchymal stem cells as a treatment for neonatal ischemic brain damage. Pediatr Res. 2012;71(4 Pt 2):474–81.PubMedCrossRefGoogle Scholar
  36. 36.
    Guo F, Lv S, Lou Y, Tu W, Liao W, Wang Y, et al. Bone marrow stromal cells enhance the angiogenesis in ischaemic cortex after stroke: involvement of notch signalling. Cell Biol Int. 2012;36(11):997–1004.PubMedCrossRefGoogle Scholar
  37. 37.
    Doeppner TR, Herz J, Gorgens A, Schlechter J, Ludwig AK, Radtke S, et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med. 2015;4(10):1131–43.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Otero-Ortega L, Gomez de Frutos MC, Laso-Garcia F, Rodriguez-Frutos B, Medina-Gutierrez E, Lopez JA, et al. Exosomes promote restoration after an experimental animal model of intracerebral hemorrhage. J Cereb Blood Flow Metab. 2017;1:271678X17708917.Google Scholar
  39. 39.
    Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int. 2016;pii:S0197-0186(16)30251-0.Google Scholar
  40. 40.
    Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013;65(3):336–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Du W, Zhang K, Zhang S, Wang R, Nie Y, Tao H, et al. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials. 2017;133:70–81.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen J, Ning R, Zacharek A, Cui C, Cui X, Yan T, et al. MiR-126 contributes to human umbilical cord blood cell-induced neurorestorative effects after stroke in type-2 diabetic mice. Stem Cells. 2016;34(1):102–13.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mathiyalagan P, Liang Y, Kim D, Misener S, Thorne T, Kamide CE, et al. Angiogenic mechanisms of human CD34+ stem cell exosomes in the repair of ischemic hindlimb. Circ Res. 2017;120(9):1466–76.PubMedCrossRefGoogle Scholar
  44. 44.
    Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016;5(4):e1071008.PubMedCrossRefGoogle Scholar
  45. 45.
    Que RS, Lin C, Ding GP, Wu ZR, Cao LP. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer. J Zhejiang Univ Sci B. 2016;17(5):352–60.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, et al. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. J Hepatol. 2017;pii:S0168-8278(17)32055-X.Google Scholar
  47. 47.
    Bu N, Wu H, Zhang G, Zhan S, Zhang R, Sun H, et al. Exosomes from dendritic cells loaded with chaperone-rich cell lysates elicit a potent T cell immune response against intracranial glioma in mice. J Mol Neurosci. 2015;56(3):631–43.PubMedCrossRefGoogle Scholar
  48. 48.
    Romagnoli GG, Zelante BB, Toniolo PA, Migliori IK, Barbuto JA. Dendritic cell-derived exosomes may be a tool for cancer immunotherapy by converting tumor cells into immunogenic targets. Front Immunol. 2014;5:692.PubMedGoogle Scholar
  49. 49.
    Kawikova I, Askenase PW. Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res. 2015;1617:63–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Rao P, Benito E, Fischer A. MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci. 2013;6:39.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, et al. The expansion of the metazoan microRNA repertoire. BMC Genomics. 2006;7:25.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Berezikov E. Evolution of microRNA diversity and regulation in animals. Nat Rev Genet. 2011;12(12):846–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Gurtan AM, Sharp PA. The role of miRNAs in regulating gene expression networks. J Mol Biol. 2013;425(19):3582–600.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;8:83.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707–21.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    McKenzie AJ, Hoshino D, Hong NH, Cha DJ, Franklin JL, Coffey RJ, et al. KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep. 2016;15(5):978–87.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Katakowski M, Buller B, Wang X, Rogers T, Chopp M. Functional microRNA is transferred between glioma cells. Cancer Res. 2010;70(21):8259–63.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013;335(1):201–4.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bovy N, Blomme B, Freres P, Dederen S, Nivelles O, Lion M, et al. Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget. 2015;6(12):10253–66.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wei Y, Lai X, Yu S, Chen S, Ma Y, Zhang Y, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat. 2014;147(2):423–31.PubMedCrossRefGoogle Scholar
  61. 61.
    Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012;30(7):1556–64.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31(12):2737–46.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zhang Y, Ueno Y, Liu XS, Buller B, Wang X, Chopp M, et al. The MicroRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons. J Neurosci. 2013;33(16):6885–94.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Xin H, Katakowski M, Wang F, Qian JY, Liu XS, Ali MM, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke. 2017;48(3):747–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang Y, Chopp M, Liu XS, Katakowski M, Wang X, Tian X, et al. Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol. 2017;54(4):2659–73.PubMedCrossRefGoogle Scholar
  66. 66.
    Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang ZG, Chopp M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol. 2009;8(5):491–500.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, et al. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressing multipotent mesenchymal stromal cells. Cell Transplant. 2017;26(2):243–57.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S, et al. Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem. 2013;288(10):7105–16.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bakhti M, Winter C, Simons M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem. 2011;286(1):787–96.PubMedCrossRefGoogle Scholar
  71. 71.
    Fruhbeis C, Frohlich D, Kuo WP, Kramer-Albers EM. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci. 2013;7:182.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Fruhbeis C, Frohlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11(7):e1001604.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berl). 2014;92(4):387–97.CrossRefGoogle Scholar
  74. 74.
    van Balkom BW, de Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PM, et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood. 2013;121(19):3997–4006. S1–15PubMedCrossRefGoogle Scholar
  75. 75.
    Schulz GB, Wieland E, Wustehube-Lausch J, Boulday G, Moll I, Tournier-Lasserve E, et al. Cerebral cavernous malformation-1 protein controls DLL4-notch3 signaling between the endothelium and pericytes. Stroke. 2015;46(5):1337–43.PubMedCrossRefGoogle Scholar
  76. 76.
    Hu GW, Li Q, Niu X, Hu B, Liu J, Zhou SM, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res Ther. 2015;6:10.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Goetzl EJ, Schwartz JB, Mustapic M, Lobach IV, Daneman R, Abner EL, et al. Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB J. 2017;31(8):3689–94.PubMedCrossRefGoogle Scholar
  78. 78.
    Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, et al. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J. 2009;23(5):1541–57.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng. 2016;9(4):509–29.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–79.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Satani N, Savitz SI. Is immunomodulation a principal mechanism underlying how cell-based therapies enhance stroke recovery? Neurotherapeutics. 2016;13(4):775–82.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Imai T, Takahashi Y, Nishikawa M, Kato K, Morishita M, Yamashita T, et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. J Extracellular Vesicles. 2015;4:26238.CrossRefGoogle Scholar
  83. 83.
    Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S, Imai T, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013;165(2):77–84.PubMedCrossRefGoogle Scholar
  84. 84.
    Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, et al. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol. 2006;199(1):191–200.PubMedCrossRefGoogle Scholar
  85. 85.
    Walker PA, Shah SK, Jimenez F, Aroom KR, Harting MT, Cox CS Jr. Bone marrow-derived stromal cell therapy for traumatic brain injury is neuroprotective via stimulation of non-neurologic organ systems. Surgery. 2012;152(5):790–3.PubMedCrossRefGoogle Scholar
  86. 86.
    Sakamoto W, Masuno T, Yokota H, Takizawa T. Expression profiles and circulation dynamics of rat mesenteric lymph microRNAs. Mol Med Rep. 2017;15(4):1989–96.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Jaimes Y, Naaldijk Y, Wenk K, Leovsky C, Emmrich F. Mesenchymal stem cell-derived microvesicles modulate lipopolysaccharides-induced inflammatory responses to microglia cells. Stem Cells. 2017;35(3):812–23.PubMedCrossRefGoogle Scholar
  88. 88.
    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Doring A, Sloka S, Lau L, Mishra M, van Minnen J, Zhang X, et al. Stimulation of monocytes, macrophages, and microglia by amphotericin B and macrophage colony-stimulating factor promotes remyelination. J Neurosci. 2015;35(3):1136–48.PubMedCrossRefGoogle Scholar
  90. 90.
    Fu PC, Tang RH, Wan Y, Xie MJ, Wang W, Luo X, et al. ROCK inhibition with fasudil promotes early functional recovery of spinal cord injury in rats by enhancing microglia phagocytosis. J Huazhong Univ Sci Technolog Med Sci. 2016;36(1):31–6.Google Scholar
  91. 91.
    Lin X, Zhao T, Walker M, Ding A, Lin S, Cao Y, et al. Transplantation of pro-oligodendroblasts, preconditioned by LPS-stimulated microglia, promotes recovery after acute contusive spinal cord injury. Cell Transplant. 2016;25(12):2111–28.PubMedCrossRefGoogle Scholar
  92. 92.
    Bahrini I, Song JH, Diez D, Hanayama R. Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia. Sci Rep. 2015;5:7989.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY, et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell. 2016;165(4):921–35.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Southam KA, Vincent AJ, Small DH. Do microglia default on network maintenance in alzheimer's disease? J Alzheimers Dis. 2016;51(3):657–69.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Benjamin Buller
    • 1
  • Michael Chopp
    • 1
    • 2
  • Zheng Gang Zhang
    • 1
    Email author
  1. 1.Department of NeurologyHenry Ford Health SystemDetroitUSA
  2. 2.Department of PhysicsOakland UniversityRochesterUSA

Personalised recommendations