Advertisement

SB623 Preclinical and Clinical Trial Experience

  • Eric S. SussmanEmail author
  • Gary K. Steinberg
Chapter
  • 783 Downloads
Part of the Springer Series in Translational Stroke Research book series (SSTSR)

Abstract

Stroke affects more than 15 million individuals each year, and is the second leading cause of mortality worldwide [1]. In the United States alone, there are nearly 800,000 strokes annually, and over seven million individuals (approximately 3% of the adult population) live with the sequelae of a prior stroke [2]. More than half of these individuals suffer from long-term limitation of functional mobility [3]. From an economic perspective, the direct and indirect costs related to stroke are as high as $65 billion per year in the United States [4].

Keywords

Stroke Neuroregeneration Cell-based therapy Stem cells Mesenchymal stem cells SB623 cells 

Abbreviations

AE

Adverse event

BDNF

Brain-derived neurotrophic factor

bFGF

Basic fibroblast growth factor

DWI

Diffusion-weighted imaging

ECM

Extracellular matrix

EGF

Epidermal growth factor

ESC

Embryonic stem cells

ESS

European Stroke Scale

FDA

Food and Drug Administration

FMA

Fugl-Meyer Assessment

GDNF

Glial cell line-derived neurotrophic factor

IGF-1

Insulin-like growth factor 1

MRI

Magnetic resonance imaging

mRS

Modified Rankin Scale

MSC

Mesenchymal stem cells

NIHSS

National Institute of Health Stroke Scale

NSC

Neural stem cells

RCT

Randomized controlled trial MCA, middle cerebral artery

T2 FLAIR

T2-weighted-fluid-attenuated inversion recovery

TEAE

Treatment emergent adverse event

VEGF

Vascular endothelial growth factor

Notes

Acknowledgments

We thank Christine Plant for assistance with the manuscript.

Funding: This work was supported in part by funding from Bernard and Ronni Lacroute, the William Randolph Hearst Foundation and Marc Paskin.

References

  1. 1.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012 Dec;380(9859):2095–128.CrossRefPubMedGoogle Scholar
  2. 2.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;3125(1):188–97.Google Scholar
  3. 3.
    Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;26133(4):e38–60.Google Scholar
  4. 4.
    Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil. 2014 May;95(5):986–995.e1.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;14333(24):1581–7.Google Scholar
  6. 6.
    Jayaraman MV, Hussain MS, Abruzzo T, Albani B, Albuquerque FC, Alexander MJ, et al. Embolectomy for stroke with emergent large vessel occlusion (ELVO): report of the Standards and Guidelines Committee of the Society of NeuroInterventional Surgery: Table 1. J Neurointerv Surg. 2015;137(5):316–21.CrossRefGoogle Scholar
  7. 7.
    Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment. Stroke. 2015;2846(10):3020–35.CrossRefGoogle Scholar
  8. 8.
    Pollock A, Baer G, Campbell P, Choo PL, Forster A, Morris J, et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Chichester, UK: Wiley; 1996.Google Scholar
  9. 9.
    Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;2835(11):2529–39.CrossRefGoogle Scholar
  10. 10.
    Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke. 2007 Feb;38(2 Suppl):817–26.CrossRefPubMedGoogle Scholar
  11. 11.
    Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A. 2004;10101(32):11839–44.CrossRefGoogle Scholar
  12. 12.
    Bühnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, et al. Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain. 2006 Dec;129(Pt 12):3238–48.CrossRefPubMedGoogle Scholar
  13. 13.
    Daadi MM, Li Z, Arac A, Grueter BA, Sofilos M, Malenka RC, et al. Molecular and magnetic resonance imaging of human embryonic stem cell-derived neural stem cell grafts in ischemic rat brain. Mol Ther. 2009 Jul;17(7):1282–91.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ishibashi S, Sakaguchi M, Kuroiwa T, Yamasaki M, Kanemura Y, Shizuko I, et al. Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in Mongolian gerbils. J Neurosci Res. 2004;78(2):215–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Chu K, Kim M, Park K-I, Jeong S-W, Park H-K, Jung K-H, et al. Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res. 2004 Aug;1016(2):145–53.CrossRefPubMedGoogle Scholar
  16. 16.
    Bliss TM, Kelly S, Shah AK, Foo WC, Kohli P, Stokes C, et al. Transplantation of hNT neurons into the ischemic cortex: cell survival and effect on sensorimotor behavior. J Neurosci Res. 2006;183(6):1004–14.CrossRefGoogle Scholar
  17. 17.
    Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, et al. Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience. 2006;137(2):393–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, et al. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res. 2009;88(5):1017–25.Google Scholar
  19. 19.
    Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005 Jan;11(1):96–104.CrossRefPubMedGoogle Scholar
  20. 20.
    Bao X, Wei J, Feng M, Lu S, Li G, Dou W, et al. Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res. 2011 Jan;1367:103–13.CrossRefPubMedGoogle Scholar
  21. 21.
    Lladó J, Haenggeli C, Maragakis NJ, Snyder EY, Rothstein JD. Neural stem cells protect against glutamate-induced excitotoxicity and promote survival of injured motor neurons through the secretion of neurotrophic factors. Mol Cell Neurosci. 2004 Nov;27(3):322–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 2002;2290(3):284–8.CrossRefGoogle Scholar
  23. 23.
    Jiang Q, Zhang ZG, Ding GL, Zhang L, Ewing JR, Wang L, et al. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. NeuroImage. 2005;1528(3):698–707.CrossRefGoogle Scholar
  24. 24.
    Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, et al. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells. 2011 Feb;29(2):274–85.CrossRefPubMedGoogle Scholar
  25. 25.
    Modo M, Rezaie P, Heuschling P, Patel S, Male DK, Hodges H. Transplantation of neural stem cells in a rat model of stroke: assessment of short-term graft survival and acute host immunological response. Brain Res. 2002 Dec;958(1):70–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Bliss T, Guzman R, Daadi M, Steinberg GK. Cell transplantation therapy for stroke. Stroke. 2007;2938(2):817–26.CrossRefGoogle Scholar
  27. 27.
    Niemeyer P, Krause U, Kasten P, Kreuz P, Henle P, Sudkamp N, et al. Mesenchymal stem cell-based HLA-independent cell therapy for tissue engineering of bone and cartilage. Curr Stem Cell Res Ther. 2006;11(1):21–7.CrossRefGoogle Scholar
  28. 28.
    Jones BJ, McTaggart SJ. Immunosuppression by mesenchymal stromal cells: from culture to clinic. Exp Hematol. 2008 Jun;36(6):733–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol. 2014 Mar;32(3):252–60.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ji JF, He BP, Dheen ST, Tay SSW. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells. 2004 May;22(3):415–27.CrossRefPubMedGoogle Scholar
  31. 31.
    Satake K, Lou J, Lenke LG. Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine. 2004;29(18):1971–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One. 2012 Oct;257(10):e47559.CrossRefGoogle Scholar
  33. 33.
    Vu Q, Xie K, Eckert M, Zhao W, Cramer SC. Meta-analysis of preclinical studies of mesenchymal stromal cells for ischemic stroke. Neurology. 2014;882(14):1277–86.CrossRefGoogle Scholar
  34. 34.
    Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005 Jun;57(6):874–82.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;128(6):1099–106.CrossRefGoogle Scholar
  36. 36.
    Moniche F, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Pinero P, Espigado I, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. 2012;2343(8):2242–4.CrossRefGoogle Scholar
  37. 37.
    Bhasin A, Srivastava MVP, Kumaran SS, Mohanty S, Bhatia R, Bose S, et al. Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc Dis Extra. 2011;1(1):93–104.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bhasin A, Srivastava M, Bhatia R, Mohanty S, Kumaran S, Bose S. Autologous intravenous mononuclear stem cell therapy in chronic ischemic stroke. J Stem Cells Regen Med. 2012;8(3):181–9.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014 Dec;45(12):3618–24.CrossRefPubMedGoogle Scholar
  40. 40.
    Taguchi A, Sakai C, Soma T, Kasahara Y, Stern DM, Kajimoto K, et al. Intravenous autologous bone marrow mononuclear cell transplantation for stroke: phase 1/2a clinical trial in a homogeneous group of stroke patients. Stem Cells Dev. 2015 Oct;24(19):2207–18.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hess DC, Wechsler LR, Clark WM, Savitz SI, Ford GA, Chiu D, et al. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol. 2017 May;16(5):360–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang Q, Duan F, Wang M-X, Wang X-D, Liu P, Ma L-Z. Effect of stem cell-based therapy for ischemic stroke treatment: a meta-analysis. Clin Neurol Neurosurg. 2016 Jul;146:1–11.CrossRefPubMedGoogle Scholar
  43. 43.
    Yang Z, Cai X, Xu A, Xu F, Liang Q. Bone marrow stromal cell transplantation through tail vein injection promotes angiogenesis and vascular endothelial growth factor expression in cerebral infarct area in rats. Cytotherapy. 2015 Sep;17(9):1200–12.CrossRefPubMedGoogle Scholar
  44. 44.
    Wang L-Q, Lin Z-Z, Zhang H-X, Shao B, Xiao L, Jiang H-G, et al. Timing and dose regimens of marrow mesenchymal stem cell transplantation affect the outcomes and neuroinflammatory response after ischemic stroke. CNS Neurosci Ther. 2014;720(4):317–26.CrossRefGoogle Scholar
  45. 45.
    Darsalia V, Allison SJ, Cusulin C, Monni E, Kuzdas D, Kallur T, et al. Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab. 2011 Jan;31(1):235–42.CrossRefPubMedGoogle Scholar
  46. 46.
    Modo M, Stroemer RP, Tang E, Patel S, Hodges H. Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke. 2002 Sep;33(9):2270–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Jin K, Sun Y, Xie L, Mao XO, Childs J, Peel A, et al. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat. Neurobiol Dis. 2005 Mar;18(2):366–74.CrossRefPubMedGoogle Scholar
  48. 48.
    Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Investig. 2004;15113(12):1701–10.CrossRefGoogle Scholar
  49. 49.
    Aizman I, Tate CC, McGrogan M, Case CC. Extracellular matrix produced by bone marrow stromal cells and by their derivative, SB623 cells, supports neural cell growth. J Neurosci Res. 2009;187(14):3198–206.CrossRefGoogle Scholar
  50. 50.
    Aizman I, Tirumalashetty BJ, McGrogan M, Case CC. Comparison of the neuropoietic activity of gene-modified versus parental mesenchymal stromal cells and the identification of soluble and extracellular matrix-related neuropoietic mediators. Stem Cell Res Ther. 2014;265(1):29.CrossRefGoogle Scholar
  51. 51.
    Dao M, Tate CC, McGrogan M, Case CC. Comparing the angiogenic potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells. J Transl Med. 2013;2711(1):81.CrossRefGoogle Scholar
  52. 52.
    Tate CC, Fonck C, McGrogan M, Case CC. Human mesenchymal stromal cells and their derivative, SB623 cells, rescue neural cells via trophic support following in vitro ischemia. Cell Transplant. 2010;19(8):973–84.CrossRefPubMedGoogle Scholar
  53. 53.
    Dao MA, Tate CC, Aizman I, McGrogan M, Case CC. Comparing the immunosuppressive potency of naïve marrow stromal cells and Notch-transfected marrow stromal cells. J Neuroinflammation. 2011;78(1):133.CrossRefGoogle Scholar
  54. 54.
    Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, et al. Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev. 2009 Dec;18(10):1501–14.CrossRefPubMedGoogle Scholar
  55. 55.
    Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, et al. Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke. 2016 Jul;47(7):1817–24.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Neurosurgery and Stanford Stroke CenterStanford University School of Medicine and Stanford Health Care, Stanford UniversityStanfordUSA

Personalised recommendations