Skip to main content

Combination Treatment of Mesenchymal Stem Cells (MSCs) and Angelica sinensis’ Active Ingredients for Ischemic Stroke

  • Chapter
  • First Online:
  • 977 Accesses

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

At present, mesenchymal stem cells (MSCs) are regarded as a candidate for neovascularization and tissue regeneration after ischemic stroke. Numerous studies reported that Angelica (also called Dong quai, a well-known Chinese herbal medicine) extracts and its active ingredients such as ligustilide, n-Butylphthalide and sodium ferulate had significant effects of anti-inflammatory, anti-activation of oxygen free radicals, angiogenesis, anti-platelet aggregation, neuroprotection and so on. Angelica’ active compositions facilitated MSCs to migrate into infarcted zone and differentiation. Moreover, MSCs combined with angelica’ active components improved neurological function and decreased infarcted volume, advanced neovascularization and neurogenesis, regulated astrocytes characteristics, enhanced regional cerebral blood flow and glucose metabolism, as well as reduced brain-blood barrier permeability in infarction. Consequently, the structure and function of neurovascular unit in infarct region partly obtained recovery. Therefore, the combination treatment was a valuable therapy aimed at improving post-stroke restoration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

BMP:

Bone morphogenetic proteins

BP:

n-Butylidenephthalide

BrdU:

5-Bromo-2′-deoxyuridine

CBF:

Cerebral blood flow

CXCR4:

Chemokine (CXC motif) receptor-4

DCX:

Doublecortin

DG:

Dentate gyrus

EC:

Endothelial cell

ERK:

Extracellular signal-regulated kinases

FA:

Ferulic acid

FDA:

Food and Drug Administration

FDG:

18F-2-deoxy-glucose

GDNF:

Glial cell line-derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

HIF:

Hypoxia-inducible factors

HUVEC:

Human umbilical vein endothelial cell

MCAo:

Middle cerebral artery occlusion

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stem cell

mTOR:

Mammalian target of rapamycin

NBP:

n-Butylphthalide

PET/CT:

Positron emission tomography–computed tomography

PWI:

Perfusion-weighted imaging

SDF-1:

Stromal cell-derived factor-1

SF:

Sodium ferulate

STEPS:

Stem Cells as an Emerging Paradigm in Stroke

SVZ:

Subventricular zone

TTC:

2,3,5-Triphenyltetrazolium chloride

Tuj-1:

Neuron-specific class III beta-tubulin

VEGF:

Vascular endothelial growth factor

vWF:

Von Willebrand factor

References

  1. Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol. 2011;10:471–80.

    Article  CAS  PubMed  Google Scholar 

  2. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011;123:e18–e209.

    Article  PubMed  Google Scholar 

  3. Elkins JS, Johnston CC. Thirty-year projections for deaths from ischemic stroke in the United States. Stroke. 2003;34:2109–13.

    Article  PubMed  Google Scholar 

  4. Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener. 2011;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Adams HP Jr, Brott TG, Furlan AJ, Gomez CR, Grotta J, Helgason CM, Kwiatkowski T, Lyden PD, Marler JR, Torner J, Feinberg W, Mayberg M, Thies W. Guidelines for thrombolytic therapy for acute stroke: a supplement to the guidelines for the management of patients with acute ischemic stroke: a statement for healthcare professionals from a Special Writing Group of the Stroke. Circulation. 1996;94:1167–74.

    Article  PubMed  Google Scholar 

  6. Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, Khalessi AA, Levy EI, Palesch YY, Prabhakaran S, Saposnik G, Saver JL, Smith EE, American Heart Association Stroke Council and Council on Epidemiology and Prevention. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47:581–641.

    Article  PubMed  Google Scholar 

  7. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest. 2004;113:1701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57:874–82.

    Article  PubMed  Google Scholar 

  9. Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002;1:92–100.

    Article  PubMed  Google Scholar 

  10. Lee J, Kuroda S, Shichinohe H, Ikeda J, Seki T, Hida K, Tada M, Sawada K, Iwasaki Y. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology. 2003;23:169–80.

    Article  PubMed  Google Scholar 

  11. Wei L, Fraser JL, Lu ZY, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46:635–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suárez-Monteagudo C, Hernández-Ramírez P, Alvarez-González L, García-Maeso I, de la Cuétara-Bernal K, Castillo-Díaz L, Bringas-Vega ML, Martínez-Aching G, Morales-Chacón LM, Báez-Martín MM, Sánchez-Catasús C, Carballo-Barreda M, Rodríguez-Rojas R, Gómez-Fernández L, Alberti-Amador E, Macías-Abraham C, Balea ED, Rosales LC, Del Valle Pérez L, Ferrer BB, González RM, Bergado JA. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci. 2009;27:151–61.

    PubMed  Google Scholar 

  13. Savitz SI, Cramer SC, Wechsler L, STEPS 3 Consortium. Stem cells as an emerging paradigm in stroke 3: enhancing the development of clinical trials. Stroke. 2014;45:634–9.

    Article  PubMed  Google Scholar 

  14. Liu YM, Zhang JJ, Jiang J. Observation on clinical effect of Angelica injection in treating acute cerebral infarction. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2004;24:205–8.

    PubMed  Google Scholar 

  15. Peng HY, Du JR, Zhang GY, Kuang X, Liu YX, Qian ZM, Wang CY. Neuroprotective effect of Z-ligustilide against permanent focal ischemic damage in rats. Biol Pharm Bull. 2007;30:309–12.

    Article  CAS  PubMed  Google Scholar 

  16. Xu J, Wang Y, Li N, Xu L, Yang H, Yang Z. L-3-n-butylphthalide improves cognitive deficits in rats with chronic cerebral ischemia. Neuropharmacology. 2012;62:2424–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cui LY, Zhu YC, Gao S, Wang JM, Peng B, Ni J, Zhou LX, He J, Ma XQ. Ninety-day administration of dl-3-n-butylphthalide for acute ischemic stroke: a randomized, double-blind trial. Chin Med J. 2013;126:3405–10.

    CAS  PubMed  Google Scholar 

  18. Cui X, Chopp M, Zacharek A, Roberts C, Lu M, Savant-Bhonsale S, Chen J. Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke. Neurobiol Dis. 2009;36:35–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu J, Liu X, Chen J, Zacharek A, Cui X, Savant-Bhonsale S, Liu Z, Chopp M. Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway. Am J Physiol Cell Physiol. 2009;296:C535–43.

    Article  CAS  PubMed  Google Scholar 

  20. Pirzad Jahromi G, Seidi S, Sadr SS, Shabanzadeh AP, Keshavarz M, Kaka GR, Hosseini SK, Sohanaki H, Charish J. Therapeutic effects of a combinatorial treatment of simvastatin and bone marrow stromal cells on experimental embolic stroke. Basic Clin Pharmacol Toxicol. 2012;110:487–93.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y, Zhang Q, Chen Z, Liu N, Ke C, Xu Y, Wu W. Simvastatin combined with bone marrow stromal cells treatment activates astrocytes to ameliorate neurological function after ischemic stroke in rats. Turk J Biol. 2016;40:519–28.

    Article  CAS  Google Scholar 

  22. Wang Y, Li WY, Li MQ, Guan YQ, Zhang XB, Lv WZ. Effects of astragaloside IV combined with bone mesenchymal stem cell transplantation on angiogenesis after cerebral ischemia-reperfusion in rats. Anat Res. 2011;33:323–6.

    Google Scholar 

  23. Guo JW, Chen C, Huang Y, Li B. Combinatorial effects of Naomai Yihao capsules and vascular endothelial growth factor gene-transfected bone marrow mesenchymal stem cells on angiogenesis in cerebral ischemic tissues in rats. J Tradit Chin Med. 2012;32:87–92.

    Article  PubMed  Google Scholar 

  24. Hu XY, Wang WX, Yu MJ, Liu XB, Wu RR, Gao F, Huang X, Cao J, Xie XJ, Wang JA. Tongxinluo promotes mesenchymal stem cell tube formation in vitro. J Zhejiang Univ Sci B. 2011;12:644–51.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang YK, Han XY, Che ZY. Effects of buyang huanwu tang combined with bone marrow mesenchymal stem cell transplantation on the expression of VEGF and Ki-67 in the brain tissue of the cerebral ischemia-reperfusion model rat. J Tradit Chin Med. 2010;30:278–82.

    Article  CAS  PubMed  Google Scholar 

  26. Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26:627–34.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Y, Guan Y, Xu Y, Li Y, Wu W. Sodium Ferulate combined with bone marrow stromal cell treatment ameliorating rat brain ischemic injury after stroke. Brain Res. 2012;1450:157–65.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Q, Chen ZW, Zhao YH, Liu BW, Liu NW, Ke CC, Tan HM. Bone marrow stromal cells combined with sodium ferulate and n-butylidenephthalide promote the effect of therapeutic angiogenesis via advancing astrocyte-derived trophic factors after ischemic stroke. Cell Transplant. 2017;26:229–42.

    Article  PubMed  Google Scholar 

  29. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurological examination. Stroke. 1986;17:472–6.

    Article  CAS  PubMed  Google Scholar 

  30. Zhao Y, Lai W, Xu Y, Li L, Chen Z, Wu W. Exogenous and endogenous therapeutic effects of combination Sodium Ferulate and bone marrow stromal cells (BMSCs) treatment enhance neurogenesis after rat focal cerebral ischemia. Metab Brain Dis. 2013;28:655–66.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Q, Zhao Y, Xu Y, Chen Z, Liu N, Ke C, Liu B, Wu W. Sodium ferulate and n-butylidenephthalate combined with bone marrow stromal cells (BMSCs) improve the therapeutic effects of angiogenesis and neurogenesis after rat focal cerebral ischemia. J Transl Med. 2016;14:223.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cheng CY, Ho TY, Lee EJ, Su SY, Tang NY, Hsieh CL. Ferulic acid reduces cerebral infarct through its antioxidative and anti-inflammatory effects following transient focal cerebral ischemia in rats. Am J Chin Med. 2008;36:1105–19.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Deng Z, Lai X, Tu W. Differentiation of human bone marrow stromal cells into neural-like cells induced by Sodium Ferulate in vitro. Cell Mol Immunol. 2005;2:225–9.

    CAS  PubMed  Google Scholar 

  34. Ebendal T, Bengtsson H, Soderstrom S. Bone morphogenetic proteins and their receptors: potential functions in the brain. J Neurosci Res. 1998;51:139–46.

    Article  CAS  PubMed  Google Scholar 

  35. Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron. 1996;17:595–606.

    Article  CAS  PubMed  Google Scholar 

  36. Shin JA, Kang JL, Lee KE, Park EM. Different temporal patterns in the expressions of bone morphogenetic proteins and noggin during astroglial scar formation after ischemic stroke. Cell Mol Neurobiol. 2012;32:587–97.

    Article  CAS  PubMed  Google Scholar 

  37. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442:823–6.

    Article  CAS  PubMed  Google Scholar 

  38. Magnusson JP, Göritz C, Tatarishvili J, Dias DO, Smith EM, Lindvall O, Kokaia Z, Frisén J. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science. 2014;346:237–41.

    Article  CAS  PubMed  Google Scholar 

  39. Takizawa T, Ochiai W, Nakashima K, Taga T. Enhanced gene activation by Notch and BMP signaling cross-talk. Nucleic Acids Res. 2003;31:5723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Deng YB, Zhou GQ. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res. 2008;1195:104–12.

    Article  CAS  PubMed  Google Scholar 

  41. Dar A, Goichberg P, Shinder V, Kalinkovich A, Kollet O, Netzer N, Margalit R, Zsak M, Nagler A, Hardan I, Resnick I, Rot A, Lapidot T. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005;6:1038–46.

    Article  CAS  PubMed  Google Scholar 

  42. Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, Kollet O, Hershkoviz R, Alon R, Hardan I, Ben-Hur H, Naor D, Nagler A, Lapidot T. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood. 2004;103:2981–9.

    Article  CAS  PubMed  Google Scholar 

  43. Cui X, Chen J, Zacharek A, Roberts C, Yang Y, Chopp M. Nitric oxide donor up-regulation of SDF1/CXCR4 and Ang1/Tie2 promotes neuroblast cell migration after stroke. J Neurosci Res. 2009;87:86–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92:692–9.

    Article  CAS  PubMed  Google Scholar 

  45. Chen J, Li Y, Zhang R, Katakowski M, Gautam SC, Xu Y, Lu M, Zhang Z, Chopp M. Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain Res. 2004;1005:21–8.

    Article  CAS  PubMed  Google Scholar 

  46. Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, Feng Y, Gao Q, Chopp M. Angiopoietin1⁄Tie2 and VEGF⁄Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. 2007;27:1684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216:47–55.

    Article  CAS  PubMed  Google Scholar 

  48. Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, Kocsis JD. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain. 2006;129:2734–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bao X, Feng M, Wei J, Han Q, Zhao H, Li G, Zhu Z, Xing H, An Y, Qin C, Zhao RC, Wang R. Transplantation of Flk-1+human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats. Eur J Neurosci. 2011;34:87–98.

    Article  PubMed  Google Scholar 

  50. Komatsu K, Honmou O, Suzuki J, Houkin K, Hamada H, Kocsis JD. Therapeutic time window of mesenchymal stem cells derived from bone marrow after cerebral ischemia. Brain Res. 2010;1334:84–92.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Q, Zhao YH. Therapeutic angiogenesis after ischemic stroke: Chinese medicines, bone marrow stromal cells (BMSCs) and their combinational treatment. Am J Chin Med. 2014;42:61–77.

    Article  CAS  PubMed  Google Scholar 

  52. Chen J, Ye X, Yan T, Zhang C, Yang XP, Cui X, Cui Y, Zacharek A, Roberts C, Liu X, Dai X, Lu M, Chopp M. Adverse effects of bone marrow stromal cell treatment of stroke in diabetic rats. Stroke. 2011;42:3551–8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Teng H, Zhang ZG, Wang L, Zhang RL, Zhang L, Morris D, Gregg SR, Wu Z, Jiang A, Lu M, Zlokovic BV, Chopp M. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab. 2008;28(4):764–71.

    Article  CAS  PubMed  Google Scholar 

  54. Ruan L, Wang B, ZhuGe Q, Jin K. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res. 1623;2015:166–73.

    Google Scholar 

  55. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111:1843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schäbitz WR, Steigleder T, Cooper-Kuhn CM, Schwab S, Sommer C, Schneider A, Kuhn HG. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38:2165–72.

    Article  PubMed  Google Scholar 

  57. Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee KS, Oh W, Lee JK, Jeun SS. Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res. 2008;86:2168–78.

    Article  CAS  PubMed  Google Scholar 

  58. Fouda AY, Alhusban A, Ishrat T, Pillai B, Eldahshan W, Waller JL, Ergul A, Fagan SC. Brain-derived neurotrophic factor knockdown blocks the angiogenic and protective effects of angiotensin modulation after experimental stroke. Mol Neurobiol. 2017;54:661–70.

    Article  CAS  PubMed  Google Scholar 

  59. Chong ZZ, Yao Q, Li HH. The rationale of targeting mammalian target of rapamycin for ischemic stroke. Cell Signal. 2013;25:1598–607.

    Article  CAS  PubMed  Google Scholar 

  60. Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N, Kang E, Song H, Ming GL. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron. 2009;63:761–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Qi D, Ouyang C, Wang Y, Zhang S, Ma X, Song Y, Yu H, Tang J, Fu W, Sheng L, Yang L, Wang M, Zhang W, Miao L, Li T, Huang X, Dong H. HO-1 attenuates hippocampal neurons injury via the activation of BDNF-TrkB-PI3K/Akt signaling pathway in stroke. Brain Res. 2014;1577:69–76.

    Article  CAS  PubMed  Google Scholar 

  62. Guo S, Som AT, Waeber C, Lo EH. Vascular neuroprotection via TrkB- and Akt-dependent cell survival signaling. J Neurochem. 2012;123(Suppl 2):58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lam HW, Lin HC, Lao SC, Gao JL, Hong SJ, Leong CW, Yue PY, Kwan YW, Leung AY, Wang YT, Lee SM. The angiogenic effects of Angelica sinensis extract on HUVEC in vitro and zebrafish in vivo. J Cell Biochem. 2008;103:195–211.

    Article  CAS  PubMed  Google Scholar 

  64. Lin CM, Chiu JH, Wu IH, Wang BW, Pan CM, Chen YH. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1 alpha. J Nutr Biochem. 2010;21:627–33.

    Article  CAS  PubMed  Google Scholar 

  65. Liu CL, Liao SJ, Zeng JS, Lin JW, Li CX, Xie LC, Shi XG, Huang RX. dl-3n-butylphthalide prevents stroke via improvement of cerebral microvessels in RHRSP. J Neurol Sci. 2007;260:106–13.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang L, Lü L, Chan WM, Huang Y, Wai MS, Yew DT. Effects of DL-3-n-butylphthalide on vascular dementia and angiogenesis. Neurochem Res. 2012;37:911–9.

    Article  CAS  PubMed  Google Scholar 

  67. Liao SJ, Lin JW, Pei Z, Liu CL, Zeng JS, Huang RX. Enhanced angiogenesis with dl-3n-butylphthalide treatment after focal cerebral ischemia in RHRSP. Brain Res. 2009;1289:69–78.

    Article  CAS  PubMed  Google Scholar 

  68. Lu XL, Luo D, Yao XL, Wang GL, Liu ZY, Li ZX, Li W, Chang FJ, Wen L, Lee SM, Zhang ZJ, Li L, Zeng JS, Huang RX, Pei Z, Ou JS. dl-3n-Butylphthalide promotes angiogenesis via the extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase/Akt-endothelial nitric oxide synthase signaling pathways. J Cardiovasc Pharmacol. 2012;59:352–62.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang K, Zhu L, Fan M. Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Front Mol Neurosci. 2011;4:5.

    PubMed  PubMed Central  Google Scholar 

  70. Xin J, Zhang J, Yang Y, Deng M, Xie X. Radix Angelica sinensis that contains the component Z-ligustilide promotes adult neurogenesis to mediate recovery from cognitive impairment. Curr Neurovasc Res. 2013;10:304–15.

    Article  CAS  PubMed  Google Scholar 

  71. Yabe T, Hirahara H, Harada N, Ito N, Nagai T, Sanagi T, Yamada H. Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience. 2010;165:515–24.

    Article  CAS  PubMed  Google Scholar 

  72. Yang J, Yang S, Yuan YJ. Integrated investigation of lipidome and related signaling pathways uncovers molecular mechanisms of tetramethylpyrazine and butylidenephthalide protecting endothelial cells under oxidative stress. Mol BioSyst. 2012;8:1789–97.

    Article  CAS  PubMed  Google Scholar 

  73. Chan SS, Choi AO, Jones RL, Lin G. Mechanisms underlying the vasorelaxing effects of butylidenephthalide, an active constituent of Ligusticumchuanxiong, in rat isolated aorta. Eur J Pharmacol. 2006;537:111–7.

    Article  CAS  PubMed  Google Scholar 

  74. Ko WC, Liao CC, Shih CH, Lei CB, Chen CM. Relaxant effects of butylidenephthalide in isolated dog blood vessels. Planta Med. 2002;68:1004–9.

    Article  CAS  PubMed  Google Scholar 

  75. Teng CM, Chen WY, Ko WC, Ouyang CH. Antiplatelet effect of butylidenephthalide. Biochim Biophys Acta. 1987;924:375–82.

    Article  CAS  PubMed  Google Scholar 

  76. Liu SP, Harn HJ, Chien YJ, Chang CH, Hsu CY, Fu RH, Huang YC, Chen SY, Shyu WC, Lin SZ. n-butylidenephthalide (BP) maintains stem cell pluripotency by activating Jak2/Stat3 pathway and increases the efficiency of iPS cells generation. PLoS One. 2012;7:e44024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gabryel B, Trzeciak HI. Role of astrocytes in pathogenesis of ischemic brain injury. Neurotox Res. 2001;3:205–21.

    Article  CAS  PubMed  Google Scholar 

  78. Kajihara H, Tsutsumi E, Kinoshita A, Nakano J, Takagi K, Takeo S. Activated astrocytes with glycogen accumulation in ischemic penumbra during the early stage of brain infarction: immunohistochemical and electron microscopic studies. Brain Res. 2001;909:92–101.

    Article  CAS  PubMed  Google Scholar 

  79. Shen LH, Li Y, Gao Q, Savant-Bhonsale S, Chopp M. Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain. Glia. 2008;56:1747–54.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94:1077–98.

    Article  PubMed  Google Scholar 

  81. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532:195–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron. 1999;23:297–308.

    Article  CAS  PubMed  Google Scholar 

  83. Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A. 2009;106:1977–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122:2454–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li YN, Pan R, Qin XJ, Yang WL, Qi Z, Liu W, Liu KJ. Ischemic neurons activate astrocytes to disrupt endothelial barrier via increasing VEGF expression. J Neurochem. 2014;129:120–9.

    Google Scholar 

  86. Wang HM, Zhang T, Huang JK, Sun XJ. 3-N-butylphthalide (NBP) attenuates the amyloid-β-induced inflammatory responses in cultured astrocytes via the nuclear factor-κB signaling pathway. Cell Physiol Biochem. 2013;32:235–42.

    Article  CAS  PubMed  Google Scholar 

  87. Winderlich JN, Kremer KL, Koblar SA. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression. J Cereb Blood Flow Metab. 2016;36:1087–97.

    Article  CAS  PubMed  Google Scholar 

  88. Shimotake J, Derugin N, Wendland M, Vexler ZS, Ferriero DM. Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke. Stroke. 2010;41:343–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Reeson P, Tennant KA, Gerrow K, Wang J, Weiser Novak S, Thompson K, Lockhart KL, Holmes A, Nahirney PC, Brown CE. Delayed inhibition of VEGF signaling after stroke attenuates blood-brain barrier breakdown and improves functional recovery in a comorbidity-dependent manner. J Neurosci. 2015;35:128–43.

    Article  Google Scholar 

  90. Shindo A, Maki T, Mandeville ET, Liang AC, Egawa N, Itoh K, Itoh N, Borlongan M, Holder JC, Chuang TT, McNeish JD, Tomimoto H, Lok J, Lo EH, Arai K. Astrocyte-derived pentraxin 3 supports blood-brain barrier integrity under acute phase of stroke. Stroke. 2016;47:1094–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wagner DC, Scheibe J, Glocke I, Weise G, Deten A, Boltze J, Kranz A. Object-based analysis of astroglial reaction and astrocyte subtype morphology after ischemic brain injury. Acta Neurobiol Exp (Wars). 2013;73:79–87.

    Google Scholar 

  92. Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol (1985). 2006;100:328–35.

    Article  CAS  Google Scholar 

  93. Kowiański P, Lietzau G, Steliga A, Waśkow M, Moryś J. The astrocytic contribution to neurovascular coupling—still more questions than answers? Neurosci Res. 2013;75:171–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Q., Zhao, Y. (2018). Combination Treatment of Mesenchymal Stem Cells (MSCs) and Angelica sinensis’ Active Ingredients for Ischemic Stroke. In: Lapchak, P., Zhang, J. (eds) Cellular and Molecular Approaches to Regeneration and Repair. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-66679-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66679-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66678-5

  • Online ISBN: 978-3-319-66679-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics