Combination Treatment of Mesenchymal Stem Cells (MSCs) and Angelica sinensis’ Active Ingredients for Ischemic Stroke

  • Qian Zhang
  • Yonghua ZhaoEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


At present, mesenchymal stem cells (MSCs) are regarded as a candidate for neovascularization and tissue regeneration after ischemic stroke. Numerous studies reported that Angelica (also called Dong quai, a well-known Chinese herbal medicine) extracts and its active ingredients such as ligustilide, n-Butylphthalide and sodium ferulate had significant effects of anti-inflammatory, anti-activation of oxygen free radicals, angiogenesis, anti-platelet aggregation, neuroprotection and so on. Angelica’ active compositions facilitated MSCs to migrate into infarcted zone and differentiation. Moreover, MSCs combined with angelica’ active components improved neurological function and decreased infarcted volume, advanced neovascularization and neurogenesis, regulated astrocytes characteristics, enhanced regional cerebral blood flow and glucose metabolism, as well as reduced brain-blood barrier permeability in infarction. Consequently, the structure and function of neurovascular unit in infarct region partly obtained recovery. Therefore, the combination treatment was a valuable therapy aimed at improving post-stroke restoration.


Angelica sinensis Combination treatment Ischemic stroke Mesenchymal stem cells 



Blood-brain barrier


Brain-derived neurotrophic factor


Bone morphogenetic proteins






Cerebral blood flow


Chemokine (CXC motif) receptor-4




Dentate gyrus


Endothelial cell


Extracellular signal-regulated kinases


Ferulic acid


Food and Drug Administration




Glial cell line-derived neurotrophic factor


Glial fibrillary acidic protein


Hypoxia-inducible factors


Human umbilical vein endothelial cell


Middle cerebral artery occlusion


Magnetic resonance imaging


Mesenchymal stem cell


Mammalian target of rapamycin




Positron emission tomography–computed tomography


Perfusion-weighted imaging


Stromal cell-derived factor-1


Sodium ferulate


Stem Cells as an Emerging Paradigm in Stroke


Subventricular zone


2,3,5-Triphenyltetrazolium chloride


Neuron-specific class III beta-tubulin


Vascular endothelial growth factor


Von Willebrand factor


  1. 1.
    Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol. 2011;10:471–80.CrossRefPubMedGoogle Scholar
  2. 2.
    Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation. 2011;123:e18–e209.CrossRefPubMedGoogle Scholar
  3. 3.
    Elkins JS, Johnston CC. Thirty-year projections for deaths from ischemic stroke in the United States. Stroke. 2003;34:2109–13.CrossRefPubMedGoogle Scholar
  4. 4.
    Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener. 2011;6:11.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Adams HP Jr, Brott TG, Furlan AJ, Gomez CR, Grotta J, Helgason CM, Kwiatkowski T, Lyden PD, Marler JR, Torner J, Feinberg W, Mayberg M, Thies W. Guidelines for thrombolytic therapy for acute stroke: a supplement to the guidelines for the management of patients with acute ischemic stroke: a statement for healthcare professionals from a Special Writing Group of the Stroke. Circulation. 1996;94:1167–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Demaerschalk BM, Kleindorfer DO, Adeoye OM, Demchuk AM, Fugate JE, Grotta JC, Khalessi AA, Levy EI, Palesch YY, Prabhakaran S, Saposnik G, Saver JL, Smith EE, American Heart Association Stroke Council and Council on Epidemiology and Prevention. Scientific rationale for the inclusion and exclusion criteria for intravenous alteplase in acute ischemic stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47:581–641.CrossRefPubMedGoogle Scholar
  7. 7.
    Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest. 2004;113:1701–10.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bang OY, Lee JS, Lee PH, Lee G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57:874–82.CrossRefPubMedGoogle Scholar
  9. 9.
    Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol. 2002;1:92–100.CrossRefPubMedGoogle Scholar
  10. 10.
    Lee J, Kuroda S, Shichinohe H, Ikeda J, Seki T, Hida K, Tada M, Sawada K, Iwasaki Y. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology. 2003;23:169–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Wei L, Fraser JL, Lu ZY, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46:635–45.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Suárez-Monteagudo C, Hernández-Ramírez P, Alvarez-González L, García-Maeso I, de la Cuétara-Bernal K, Castillo-Díaz L, Bringas-Vega ML, Martínez-Aching G, Morales-Chacón LM, Báez-Martín MM, Sánchez-Catasús C, Carballo-Barreda M, Rodríguez-Rojas R, Gómez-Fernández L, Alberti-Amador E, Macías-Abraham C, Balea ED, Rosales LC, Del Valle Pérez L, Ferrer BB, González RM, Bergado JA. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci. 2009;27:151–61.PubMedGoogle Scholar
  13. 13.
    Savitz SI, Cramer SC, Wechsler L, STEPS 3 Consortium. Stem cells as an emerging paradigm in stroke 3: enhancing the development of clinical trials. Stroke. 2014;45:634–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu YM, Zhang JJ, Jiang J. Observation on clinical effect of Angelica injection in treating acute cerebral infarction. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2004;24:205–8.PubMedGoogle Scholar
  15. 15.
    Peng HY, Du JR, Zhang GY, Kuang X, Liu YX, Qian ZM, Wang CY. Neuroprotective effect of Z-ligustilide against permanent focal ischemic damage in rats. Biol Pharm Bull. 2007;30:309–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Xu J, Wang Y, Li N, Xu L, Yang H, Yang Z. L-3-n-butylphthalide improves cognitive deficits in rats with chronic cerebral ischemia. Neuropharmacology. 2012;62:2424–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Cui LY, Zhu YC, Gao S, Wang JM, Peng B, Ni J, Zhou LX, He J, Ma XQ. Ninety-day administration of dl-3-n-butylphthalide for acute ischemic stroke: a randomized, double-blind trial. Chin Med J. 2013;126:3405–10.PubMedGoogle Scholar
  18. 18.
    Cui X, Chopp M, Zacharek A, Roberts C, Lu M, Savant-Bhonsale S, Chen J. Chemokine, vascular and therapeutic effects of combination Simvastatin and BMSC treatment of stroke. Neurobiol Dis. 2009;36:35–41.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xu J, Liu X, Chen J, Zacharek A, Cui X, Savant-Bhonsale S, Liu Z, Chopp M. Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway. Am J Physiol Cell Physiol. 2009;296:C535–43.CrossRefPubMedGoogle Scholar
  20. 20.
    Pirzad Jahromi G, Seidi S, Sadr SS, Shabanzadeh AP, Keshavarz M, Kaka GR, Hosseini SK, Sohanaki H, Charish J. Therapeutic effects of a combinatorial treatment of simvastatin and bone marrow stromal cells on experimental embolic stroke. Basic Clin Pharmacol Toxicol. 2012;110:487–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao Y, Zhang Q, Chen Z, Liu N, Ke C, Xu Y, Wu W. Simvastatin combined with bone marrow stromal cells treatment activates astrocytes to ameliorate neurological function after ischemic stroke in rats. Turk J Biol. 2016;40:519–28.CrossRefGoogle Scholar
  22. 22.
    Wang Y, Li WY, Li MQ, Guan YQ, Zhang XB, Lv WZ. Effects of astragaloside IV combined with bone mesenchymal stem cell transplantation on angiogenesis after cerebral ischemia-reperfusion in rats. Anat Res. 2011;33:323–6.Google Scholar
  23. 23.
    Guo JW, Chen C, Huang Y, Li B. Combinatorial effects of Naomai Yihao capsules and vascular endothelial growth factor gene-transfected bone marrow mesenchymal stem cells on angiogenesis in cerebral ischemic tissues in rats. J Tradit Chin Med. 2012;32:87–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Hu XY, Wang WX, Yu MJ, Liu XB, Wu RR, Gao F, Huang X, Cao J, Xie XJ, Wang JA. Tongxinluo promotes mesenchymal stem cell tube formation in vitro. J Zhejiang Univ Sci B. 2011;12:644–51.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang YK, Han XY, Che ZY. Effects of buyang huanwu tang combined with bone marrow mesenchymal stem cell transplantation on the expression of VEGF and Ki-67 in the brain tissue of the cerebral ischemia-reperfusion model rat. J Tradit Chin Med. 2010;30:278–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Garcia JH, Wagner S, Liu KF, Hu XJ. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke. 1995;26:627–34.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhao Y, Guan Y, Xu Y, Li Y, Wu W. Sodium Ferulate combined with bone marrow stromal cell treatment ameliorating rat brain ischemic injury after stroke. Brain Res. 2012;1450:157–65.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang Q, Chen ZW, Zhao YH, Liu BW, Liu NW, Ke CC, Tan HM. Bone marrow stromal cells combined with sodium ferulate and n-butylidenephthalide promote the effect of therapeutic angiogenesis via advancing astrocyte-derived trophic factors after ischemic stroke. Cell Transplant. 2017;26:229–42.CrossRefPubMedGoogle Scholar
  29. 29.
    Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurological examination. Stroke. 1986;17:472–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao Y, Lai W, Xu Y, Li L, Chen Z, Wu W. Exogenous and endogenous therapeutic effects of combination Sodium Ferulate and bone marrow stromal cells (BMSCs) treatment enhance neurogenesis after rat focal cerebral ischemia. Metab Brain Dis. 2013;28:655–66.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Q, Zhao Y, Xu Y, Chen Z, Liu N, Ke C, Liu B, Wu W. Sodium ferulate and n-butylidenephthalate combined with bone marrow stromal cells (BMSCs) improve the therapeutic effects of angiogenesis and neurogenesis after rat focal cerebral ischemia. J Transl Med. 2016;14:223.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cheng CY, Ho TY, Lee EJ, Su SY, Tang NY, Hsieh CL. Ferulic acid reduces cerebral infarct through its antioxidative and anti-inflammatory effects following transient focal cerebral ischemia in rats. Am J Chin Med. 2008;36:1105–19.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang Y, Deng Z, Lai X, Tu W. Differentiation of human bone marrow stromal cells into neural-like cells induced by Sodium Ferulate in vitro. Cell Mol Immunol. 2005;2:225–9.PubMedGoogle Scholar
  34. 34.
    Ebendal T, Bengtsson H, Soderstrom S. Bone morphogenetic proteins and their receptors: potential functions in the brain. J Neurosci Res. 1998;51:139–46.CrossRefPubMedGoogle Scholar
  35. 35.
    Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron. 1996;17:595–606.CrossRefPubMedGoogle Scholar
  36. 36.
    Shin JA, Kang JL, Lee KE, Park EM. Different temporal patterns in the expressions of bone morphogenetic proteins and noggin during astroglial scar formation after ischemic stroke. Cell Mol Neurobiol. 2012;32:587–97.CrossRefPubMedGoogle Scholar
  37. 37.
    Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442:823–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Magnusson JP, Göritz C, Tatarishvili J, Dias DO, Smith EM, Lindvall O, Kokaia Z, Frisén J. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science. 2014;346:237–41.CrossRefPubMedGoogle Scholar
  39. 39.
    Takizawa T, Ochiai W, Nakashima K, Taga T. Enhanced gene activation by Notch and BMP signaling cross-talk. Nucleic Acids Res. 2003;31:5723–31.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang Y, Deng YB, Zhou GQ. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res. 2008;1195:104–12.CrossRefPubMedGoogle Scholar
  41. 41.
    Dar A, Goichberg P, Shinder V, Kalinkovich A, Kollet O, Netzer N, Margalit R, Zsak M, Nagler A, Hardan I, Resnick I, Rot A, Lapidot T. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005;6:1038–46.CrossRefPubMedGoogle Scholar
  42. 42.
    Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S, Kollet O, Hershkoviz R, Alon R, Hardan I, Ben-Hur H, Naor D, Nagler A, Lapidot T. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood. 2004;103:2981–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Cui X, Chen J, Zacharek A, Roberts C, Yang Y, Chopp M. Nitric oxide donor up-regulation of SDF1/CXCR4 and Ang1/Tie2 promotes neuroblast cell migration after stroke. J Neurosci Res. 2009;87:86–95.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92:692–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen J, Li Y, Zhang R, Katakowski M, Gautam SC, Xu Y, Lu M, Zhang Z, Chopp M. Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain Res. 2004;1005:21–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, Feng Y, Gao Q, Chopp M. Angiopoietin1⁄Tie2 and VEGF⁄Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. 2007;27:1684–91.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216:47–55.CrossRefPubMedGoogle Scholar
  48. 48.
    Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, Kocsis JD. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain. 2006;129:2734–45.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bao X, Feng M, Wei J, Han Q, Zhao H, Li G, Zhu Z, Xing H, An Y, Qin C, Zhao RC, Wang R. Transplantation of Flk-1+human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats. Eur J Neurosci. 2011;34:87–98.CrossRefPubMedGoogle Scholar
  50. 50.
    Komatsu K, Honmou O, Suzuki J, Houkin K, Hamada H, Kocsis JD. Therapeutic time window of mesenchymal stem cells derived from bone marrow after cerebral ischemia. Brain Res. 2010;1334:84–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang Q, Zhao YH. Therapeutic angiogenesis after ischemic stroke: Chinese medicines, bone marrow stromal cells (BMSCs) and their combinational treatment. Am J Chin Med. 2014;42:61–77.CrossRefPubMedGoogle Scholar
  52. 52.
    Chen J, Ye X, Yan T, Zhang C, Yang XP, Cui X, Cui Y, Zacharek A, Roberts C, Liu X, Dai X, Lu M, Chopp M. Adverse effects of bone marrow stromal cell treatment of stroke in diabetic rats. Stroke. 2011;42:3551–8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Teng H, Zhang ZG, Wang L, Zhang RL, Zhang L, Morris D, Gregg SR, Wu Z, Jiang A, Lu M, Zlokovic BV, Chopp M. Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab. 2008;28(4):764–71.CrossRefPubMedGoogle Scholar
  54. 54.
    Ruan L, Wang B, ZhuGe Q, Jin K. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res. 1623;2015:166–73.Google Scholar
  55. 55.
    Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111:1843–51.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Schäbitz WR, Steigleder T, Cooper-Kuhn CM, Schwab S, Sommer C, Schneider A, Kuhn HG. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007;38:2165–72.CrossRefPubMedGoogle Scholar
  57. 57.
    Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee KS, Oh W, Lee JK, Jeun SS. Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res. 2008;86:2168–78.CrossRefPubMedGoogle Scholar
  58. 58.
    Fouda AY, Alhusban A, Ishrat T, Pillai B, Eldahshan W, Waller JL, Ergul A, Fagan SC. Brain-derived neurotrophic factor knockdown blocks the angiogenic and protective effects of angiotensin modulation after experimental stroke. Mol Neurobiol. 2017;54:661–70.CrossRefPubMedGoogle Scholar
  59. 59.
    Chong ZZ, Yao Q, Li HH. The rationale of targeting mammalian target of rapamycin for ischemic stroke. Cell Signal. 2013;25:1598–607.CrossRefPubMedGoogle Scholar
  60. 60.
    Kim JY, Duan X, Liu CY, Jang MH, Guo JU, Pow-anpongkul N, Kang E, Song H, Ming GL. DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron. 2009;63:761–73.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Qi D, Ouyang C, Wang Y, Zhang S, Ma X, Song Y, Yu H, Tang J, Fu W, Sheng L, Yang L, Wang M, Zhang W, Miao L, Li T, Huang X, Dong H. HO-1 attenuates hippocampal neurons injury via the activation of BDNF-TrkB-PI3K/Akt signaling pathway in stroke. Brain Res. 2014;1577:69–76.CrossRefPubMedGoogle Scholar
  62. 62.
    Guo S, Som AT, Waeber C, Lo EH. Vascular neuroprotection via TrkB- and Akt-dependent cell survival signaling. J Neurochem. 2012;123(Suppl 2):58–64.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lam HW, Lin HC, Lao SC, Gao JL, Hong SJ, Leong CW, Yue PY, Kwan YW, Leung AY, Wang YT, Lee SM. The angiogenic effects of Angelica sinensis extract on HUVEC in vitro and zebrafish in vivo. J Cell Biochem. 2008;103:195–211.CrossRefPubMedGoogle Scholar
  64. 64.
    Lin CM, Chiu JH, Wu IH, Wang BW, Pan CM, Chen YH. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1 alpha. J Nutr Biochem. 2010;21:627–33.CrossRefPubMedGoogle Scholar
  65. 65.
    Liu CL, Liao SJ, Zeng JS, Lin JW, Li CX, Xie LC, Shi XG, Huang RX. dl-3n-butylphthalide prevents stroke via improvement of cerebral microvessels in RHRSP. J Neurol Sci. 2007;260:106–13.CrossRefPubMedGoogle Scholar
  66. 66.
    Zhang L, Lü L, Chan WM, Huang Y, Wai MS, Yew DT. Effects of DL-3-n-butylphthalide on vascular dementia and angiogenesis. Neurochem Res. 2012;37:911–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Liao SJ, Lin JW, Pei Z, Liu CL, Zeng JS, Huang RX. Enhanced angiogenesis with dl-3n-butylphthalide treatment after focal cerebral ischemia in RHRSP. Brain Res. 2009;1289:69–78.CrossRefPubMedGoogle Scholar
  68. 68.
    Lu XL, Luo D, Yao XL, Wang GL, Liu ZY, Li ZX, Li W, Chang FJ, Wen L, Lee SM, Zhang ZJ, Li L, Zeng JS, Huang RX, Pei Z, Ou JS. dl-3n-Butylphthalide promotes angiogenesis via the extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase/Akt-endothelial nitric oxide synthase signaling pathways. J Cardiovasc Pharmacol. 2012;59:352–62.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang K, Zhu L, Fan M. Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Front Mol Neurosci. 2011;4:5.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Xin J, Zhang J, Yang Y, Deng M, Xie X. Radix Angelica sinensis that contains the component Z-ligustilide promotes adult neurogenesis to mediate recovery from cognitive impairment. Curr Neurovasc Res. 2013;10:304–15.CrossRefPubMedGoogle Scholar
  71. 71.
    Yabe T, Hirahara H, Harada N, Ito N, Nagai T, Sanagi T, Yamada H. Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience. 2010;165:515–24.CrossRefPubMedGoogle Scholar
  72. 72.
    Yang J, Yang S, Yuan YJ. Integrated investigation of lipidome and related signaling pathways uncovers molecular mechanisms of tetramethylpyrazine and butylidenephthalide protecting endothelial cells under oxidative stress. Mol BioSyst. 2012;8:1789–97.CrossRefPubMedGoogle Scholar
  73. 73.
    Chan SS, Choi AO, Jones RL, Lin G. Mechanisms underlying the vasorelaxing effects of butylidenephthalide, an active constituent of Ligusticumchuanxiong, in rat isolated aorta. Eur J Pharmacol. 2006;537:111–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Ko WC, Liao CC, Shih CH, Lei CB, Chen CM. Relaxant effects of butylidenephthalide in isolated dog blood vessels. Planta Med. 2002;68:1004–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Teng CM, Chen WY, Ko WC, Ouyang CH. Antiplatelet effect of butylidenephthalide. Biochim Biophys Acta. 1987;924:375–82.CrossRefPubMedGoogle Scholar
  76. 76.
    Liu SP, Harn HJ, Chien YJ, Chang CH, Hsu CY, Fu RH, Huang YC, Chen SY, Shyu WC, Lin SZ. n-butylidenephthalide (BP) maintains stem cell pluripotency by activating Jak2/Stat3 pathway and increases the efficiency of iPS cells generation. PLoS One. 2012;7:e44024.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Gabryel B, Trzeciak HI. Role of astrocytes in pathogenesis of ischemic brain injury. Neurotox Res. 2001;3:205–21.CrossRefPubMedGoogle Scholar
  78. 78.
    Kajihara H, Tsutsumi E, Kinoshita A, Nakano J, Takagi K, Takeo S. Activated astrocytes with glycogen accumulation in ischemic penumbra during the early stage of brain infarction: immunohistochemical and electron microscopic studies. Brain Res. 2001;909:92–101.CrossRefPubMedGoogle Scholar
  79. 79.
    Shen LH, Li Y, Gao Q, Savant-Bhonsale S, Chopp M. Down-regulation of neurocan expression in reactive astrocytes promotes axonal regeneration and facilitates the neurorestorative effects of bone marrow stromal cells in the ischemic rat brain. Glia. 2008;56:1747–54.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Pekny M, Pekna M. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev. 2014;94:1077–98.CrossRefPubMedGoogle Scholar
  81. 81.
    Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532:195–200.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucke L, Johnson MH, Sofroniew MV. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron. 1999;23:297–308.CrossRefPubMedGoogle Scholar
  83. 83.
    Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A. 2009;106:1977–82.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122:2454–68.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Li YN, Pan R, Qin XJ, Yang WL, Qi Z, Liu W, Liu KJ. Ischemic neurons activate astrocytes to disrupt endothelial barrier via increasing VEGF expression. J Neurochem. 2014;129:120–9.Google Scholar
  86. 86.
    Wang HM, Zhang T, Huang JK, Sun XJ. 3-N-butylphthalide (NBP) attenuates the amyloid-β-induced inflammatory responses in cultured astrocytes via the nuclear factor-κB signaling pathway. Cell Physiol Biochem. 2013;32:235–42.CrossRefPubMedGoogle Scholar
  87. 87.
    Winderlich JN, Kremer KL, Koblar SA. Adult human dental pulp stem cells promote blood-brain barrier permeability through vascular endothelial growth factor-a expression. J Cereb Blood Flow Metab. 2016;36:1087–97.CrossRefPubMedGoogle Scholar
  88. 88.
    Shimotake J, Derugin N, Wendland M, Vexler ZS, Ferriero DM. Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke. Stroke. 2010;41:343–9.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Reeson P, Tennant KA, Gerrow K, Wang J, Weiser Novak S, Thompson K, Lockhart KL, Holmes A, Nahirney PC, Brown CE. Delayed inhibition of VEGF signaling after stroke attenuates blood-brain barrier breakdown and improves functional recovery in a comorbidity-dependent manner. J Neurosci. 2015;35:128–43.CrossRefGoogle Scholar
  90. 90.
    Shindo A, Maki T, Mandeville ET, Liang AC, Egawa N, Itoh K, Itoh N, Borlongan M, Holder JC, Chuang TT, McNeish JD, Tomimoto H, Lok J, Lo EH, Arai K. Astrocyte-derived pentraxin 3 supports blood-brain barrier integrity under acute phase of stroke. Stroke. 2016;47:1094–100.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Wagner DC, Scheibe J, Glocke I, Weise G, Deten A, Boltze J, Kranz A. Object-based analysis of astroglial reaction and astrocyte subtype morphology after ischemic brain injury. Acta Neurobiol Exp (Wars). 2013;73:79–87.Google Scholar
  92. 92.
    Girouard H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol (1985). 2006;100:328–35.CrossRefGoogle Scholar
  93. 93.
    Kowiański P, Lietzau G, Steliga A, Waśkow M, Moryś J. The astrocytic contribution to neurovascular coupling—still more questions than answers? Neurosci Res. 2013;75:171–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese MedicineMacau University of Science and TechnologyMacauChina

Personalised recommendations