The Combination of Stem Cell Factor (SCF) and Granulocyte-Colony Stimulating Factor (G-CSF) in Repairing the Brain Post-acute Stroke

  • Li-Ru ZhaoEmail author
  • Suning Ping
  • Fei Hao
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Stroke represents the leading cause of long-term disability in adults worldwide. Most stroke survivors suffer from lifelong neurological deficits. Developing a pharmaceutical approach to enhance brain repair and improve functional outcomes post-acute stroke is a very important but less investigated area in stroke research. Stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF) are the well-characterized vital hematopoietic growth factors for regulating hematopoiesis. Increasing evidence supports that SCF and G-CSF also play roles in the nervous system. Over the past decade, preclinical studies have demonstrated that SCF in combination with G-CSF synergistically enhances stroke recovery in the subacute or chronic phase. In this chapter, we have reviewed the biological function of SCF and G-CSF in hematopoiesis, neural plasticity, and neurogenesis, and summarized the preclinical studies illustrating the neurorestorative effects of SCF and G-CSF post-acute stroke.


Stem cell factor Granulocyte-colony stimulating factor Brain repair Stroke Subacute phase Chronic phase 



Alzheimer’s disease


Blood-brain barrier


Biotinylated dextran amine


Brain-derived neurotrophic factor


Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy


Central nervous system


Colony stimulating factor


C-X-C chemokine receptor type 4


Dorsal root ganglia neurons


Endothelial cells


Granulocyte-colony stimulating factor


G-CSF receptor


Granulocyte macrophage-colony stimulating factor


Hematopoietic progenitor cells


Hematopoietic stem cells


Long-term potential


Neural stem/progenitor cells


Paired-pulse facilitation


Stem cell factor


Stromal cell-derived factor 1


Subgranular zone


Spontaneous hypertensive rats


Steel gene


Subventricular zone


Tissue plasminogen activator

U-type spines

Uncertain type spines


White-spotting gene


Yellow fluorescent protein



The authors would like to thank Sandy McGillis for her assistance in editing the manuscript. This work was partially supported by the National Institutes of Health, National Institute of Neurological Disorders and Stroke (R01 NS060911), National Institute on Aging (1R01AG051674), and Department of Veterans Affairs (I01 RX002125) in the United States.


  1. 1.
    Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–55.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart Disease and Stroke Statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–e360.PubMedCrossRefGoogle Scholar
  3. 3.
    Skolarus LE, Freedman VA, Feng C, Wing JJ, Burke JF. Care received by elderly US stroke survivors may be underestimated. Stroke. 2016;47(8):2090–5.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bernheisel CR, Schlaudecker JD, Leopold K. Subacute management of ischemic stroke. Am Fam Physician. 2011;84(12):1383–8.PubMedGoogle Scholar
  5. 5.
    Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–23.PubMedCrossRefGoogle Scholar
  6. 6.
    Kang DW, Latour LL, Chalela JA, Dambrosia JA, Warach S. Early and late recurrence of ischemic lesion on MRI: evidence for a prolonged stroke-prone state? Neurology. 2004;63(12):2261–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Maraka S, Jiang Q, Jafari-Khouzani K, Li L, Malik S, Hamidian H, et al. Degree of corticospinal tract damage correlates with motor function after stroke. Ann Clin Transl Neurol. 2014;1(11):891–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Parsons MW, Li T, Barber PA, Yang Q, Darby DG, Desmond PM, et al. Combined (1)H MR spectroscopy and diffusion-weighted MRI improves the prediction of stroke outcome. Neurology. 2000;55(4):498–505.PubMedCrossRefGoogle Scholar
  9. 9.
    Poh T. Time course of ischemic stroke on non-enhanced CT. Brain Stories. 2013:1–8.Google Scholar
  10. 10.
    van Delden AE, Peper CE, Beek PJ, Kwakkel G. Unilateral versus bilateral upper limb exercise therapy after stroke: a systematic review. J Rehabil Med. 2012;44(2):106–17.PubMedCrossRefGoogle Scholar
  11. 11.
    National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581–7.CrossRefGoogle Scholar
  12. 12.
    Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.PubMedCrossRefGoogle Scholar
  13. 13.
    Penumbra Pivotal Stroke Trial I. The penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke. 2009;40(8):2761–8.CrossRefGoogle Scholar
  14. 14.
    Castano C, Dorado L, Guerrero C, Millan M, Gomis M, Perez de la Ossa N, et al. Mechanical thrombectomy with the Solitaire AB device in large artery occlusions of the anterior circulation: a pilot study. Stroke. 2010;41(8):1836–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Saver JL, Goyal M, Bonafe A, Diener HC, Levy EI, Pereira VM, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372(24):2285–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34(9):2181–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Hendricks HT, van Limbeek J, Geurts AC, Zwarts MJ. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2002;83(11):1629–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol. 2004;73(1):61–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384(9958):1929–35.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Warlow C, Sudlow C, Dennis M, Wardlaw J, Sandercock P. Stroke. Lancet. 2003;362(9391):1211–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181–98.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Welte K, Platzer E, Lu L, Gabrilove JL, Levi E, Mertelsmann R, et al. Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc Natl Acad Sci U S A. 1985;82(5):1526–30.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zsebo KM, Wypych J, McNiece IK, Lu HS, Smith KA, Karkare SB, et al. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver—conditioned medium. Cell. 1990;63(1):195–201.PubMedCrossRefGoogle Scholar
  24. 24.
    Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL, et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell. 1990;63(1):213–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Hirata T, Morii E, Morimoto M, Kasugai T, Tsujimura T, Hirota S, et al. Stem cell factor induces outgrowth of c-kit-positive neurites and supports the survival of c-kit-positive neurons in dorsal root ganglia of mouse embryos. Development. 1993;119(1):49–56.PubMedGoogle Scholar
  26. 26.
    Hirata T, Kasugai T, Morii E, Hirota S, Nomura S, Fujisawa H, et al. Characterization of c-kit-positive neurons in the dorsal root ganglion of mouse. Brain Res Dev Brain Res. 1995;85(2):201–11.PubMedCrossRefGoogle Scholar
  27. 27.
    Motro B, Wojtowicz JM, Bernstein A, van der Kooy D. Steel mutant mice are deficient in hippocampal learning but not long-term potentiation. Proc Natl Acad Sci U S A. 1996;93(5):1808–13.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Katafuchi T, Li AJ, Hirota S, Kitamura Y, Hori T. Impairment of spatial learning and hippocampal synaptic potentiation in c-kit mutant rats. Learn Mem. 2000;7(6):383–92.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Diederich K, Sevimli S, Dorr H, Kosters E, Hoppen M, Lewejohann L, et al. The role of granulocyte-colony stimulating factor (G-CSF) in the healthy brain: a characterization of G-CSF-deficient mice. J Neurosci. 2009;29(37):11572–81.PubMedCrossRefGoogle Scholar
  30. 30.
    Su Y, Cui L, Piao C, Li B, Zhao LR. The effects of hematopoietic growth factors on neurite outgrowth. PLoS One. 2013;8(10):e75562.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Jin K, Mao XO, Sun Y, Xie L, Greenberg DA. Stem cell factor stimulates neurogenesis in vitro and in vivo. J Clin Invest. 2002;110(3):311–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest. 2005;115(8):2083–98.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Piao CS, Li B, Zhang LJ, Zhao LR. Stem cell factor and granulocyte colony-stimulating factor promote neuronal lineage commitment of neural stem cells. Differentiation. 2012;83(1):17–25.PubMedCrossRefGoogle Scholar
  34. 34.
    Kawada H, Takizawa S, Takanashi T, Morita Y, Fujita J, Fukuda K, et al. Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. Circulation. 2006;113(5):701–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhao LR, Berra HH, Duan WM, Singhal S, Mehta J, Apkarian AV, et al. Beneficial effects of hematopoietic growth factor therapy in chronic ischemic stroke in rats. Stroke. 2007;38(10):2804–11.PubMedCrossRefGoogle Scholar
  36. 36.
    Piao CS, Gonzalez-Toledo ME, Xue YQ, Duan WM, Terao S, Granger DN, et al. The role of stem cell factor and granulocyte-colony stimulating factor in brain repair during chronic stroke. J Cereb Blood Flow Metab. 2009;29(4):759–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Piao CS, Gonzalez-Toledo ME, Gu X, Zhao LR. The combination of stem cell factor and granulocyte-colony stimulating factor for chronic stroke treatment in aged animals. Exp Transl Stroke Med. 2012;4(1):25.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cui L, Murikinati SR, Wang D, Zhang X, Duan WM, Zhao LR. Reestablishing neuronal networks in the aged brain by stem cell factor and granulocyte-colony stimulating factor in a mouse model of chronic stroke. PLoS One. 2013;8(6):e64684.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Cui L, Duchamp NS, Boston DJ, Ren X, Zhang X, Hu H, et al. NF-kappaB is involved in brain repair by stem cell factor and granulocyte-colony stimulating factor in chronic stroke. Exp Neurol. 2015;263:17–27.PubMedCrossRefGoogle Scholar
  40. 40.
    Cui L, Wang D, McGillis S, Kyle M, Zhao LR. Repairing the brain by SCF+G-CSF treatment at 6 months postexperimental stroke: mechanistic determination of the causal link between neurovascular regeneration and motor functional recovery. ASN Neuro. 2016;8(4).
  41. 41.
    Liu Y, Popescu M, Longo S, Gao M, Wang D, McGillis S, et al. Fibrinogen reduction and motor function improvement by hematopoietic growth factor treatment in chronic stroke in aged mice: a treatment frequency study. Cell Transplant. 2016;25(4):729–34.PubMedCrossRefGoogle Scholar
  42. 42.
    Galli SJ, Tsai M, Wershil BK. The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. Am J Pathol. 1993;142(4):965–74.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ashman LK. The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol. 1999;31(10):1037–51.PubMedCrossRefGoogle Scholar
  44. 44.
    Russell ES. Hereditary anemias of the mouse: a review for geneticists. Adv Genet. 1979;20:357–459.PubMedGoogle Scholar
  45. 45.
    Dexter TM, Moore MA. In vitro duplication and “cure” of haemopoietic defects in genetically anaemic mice. Nature. 1977;269(5627):412–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev. 2012;92(4):1619–49.PubMedCrossRefGoogle Scholar
  47. 47.
    Smith MA, Court EL, Smith JG. Stem cell factor: laboratory and clinical aspects. Blood Rev. 2001;15(4):191–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Miyazawa K, Williams DA, Gotoh A, Nishimaki J, Broxmeyer HE, Toyama K. Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood. 1995;85(3):641–9.PubMedGoogle Scholar
  49. 49.
    Brannan CI, Lyman SD, Williams DE, Eisenman J, Anderson DM, Cosman D, et al. Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A. 1991;88(11):4671–4.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Mayrhofer G, Gadd SJ, Spargo LD, Ashman LK. Specificity of a mouse monoclonal antibody raised against acute myeloid leukaemia cells for mast cells in human mucosal and connective tissues. Immunol Cell Biol. 1987;65(Pt 3):241–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Nocka K, Majumder S, Chabot B, Ray P, Cervone M, Bernstein A, et al. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice—evidence for an impaired c-kit kinase in mutant mice. Genes Dev. 1989;3(6):816–26.PubMedCrossRefGoogle Scholar
  52. 52.
    Broudy VC, Kovach NL, Bennett LG, Lin N, Jacobsen FW, Kidd PG. Human umbilical vein endothelial cells display high-affinity c-kit receptors and produce a soluble form of the c-kit receptor. Blood. 1994;83(8):2145–52.PubMedGoogle Scholar
  53. 53.
    Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995;280(1):97–111.PubMedGoogle Scholar
  54. 54.
    Broudy VC. Stem cell factor and hematopoiesis. Blood. 1997;90(4):1345–64.PubMedGoogle Scholar
  55. 55.
    Leary AG, Zeng HQ, Clark SC, Ogawa M. Growth factor requirements for survival in G0 and entry into the cell cycle of primitive human hemopoietic progenitors. Proc Natl Acad Sci U S A. 1992;89(9):4013–7.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Carson WE, Haldar S, Baiocchi RA, Croce CM, Caligiuri MA. The c-kit ligand suppresses apoptosis of human natural killer cells through the upregulation of bcl-2. Proc Natl Acad Sci U S A. 1994;91(16):7553–7.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Li CL, Johnson GR. Stem cell factor enhances the survival but not the self-renewal of murine hematopoietic long-term repopulating cells. Blood. 1994;84(2):408–14.PubMedGoogle Scholar
  58. 58.
    Valent P, Spanblochl E, Sperr WR, Sillaber C, Zsebo KM, Agis H, et al. Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit-ligand in long-term culture. Blood. 1992;80(9):2237–45.PubMedGoogle Scholar
  59. 59.
    Irani AA, Nilsson G, Ashman LK, Schwartz LB. Dexamethasone inhibits the development of mast cells from dispersed human fetal liver cells cultured in the presence of recombinant human stem cell factor. Immunology. 1995;84(1):72–8.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood. 1991;78(11):2791–808.PubMedGoogle Scholar
  61. 61.
    Stanley ER, Hansen G, Woodcock J, Metcalf D. Colony stimulating factor and the regulation of granulopoiesis and macrophage production. Fed Proc. 1975;34(13):2272–8.PubMedGoogle Scholar
  62. 62.
    Demetri GD, Zenzie BW, Rheinwald JG, Griffin JD. Expression of colony-stimulating factor genes by normal human mesothelial cells and human malignant mesothelioma cells lines in vitro. Blood. 1989;74(3):940–6.PubMedGoogle Scholar
  63. 63.
    Koeffler HP, Gasson J, Ranyard J, Souza L, Shepard M, Munker R. Recombinant human TNF alpha stimulates production of granulocyte colony-stimulating factor. Blood. 1987;70(1):55–9.PubMedGoogle Scholar
  64. 64.
    Zsebo KM, Yuschenkoff VN, Schiffer S, Chang D, McCall E, Dinarello CA, et al. Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF. Blood. 1988;71(1):99–103.PubMedGoogle Scholar
  65. 65.
    van de Geijn GJ, Aarts LH, Erkeland SJ, Prasher JM, Touw IP. Granulocyte colony-stimulating factor and its receptor in normal hematopoietic cell development and myeloid disease. Rev Physiol Biochem Pharmacol. 2003;149:53–71.PubMedCrossRefGoogle Scholar
  66. 66.
    Tamura M, Hattori K, Nomura H, Oheda M, Kubota N, Imazeki I, et al. Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochem Biophys Res Commun. 1987;142(2):454–60.PubMedCrossRefGoogle Scholar
  67. 67.
    Duhrsen U, Villeval JL, Boyd J, Kannourakis G, Morstyn G, Metcalf D. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood. 1988;72(6):2074–81.PubMedGoogle Scholar
  68. 68.
    Martino M, Laszlo D, Lanza F. Long-active granulocyte colony-stimulating factor for peripheral blood hematopoietic progenitor cell mobilization. Expert Opin Biol Ther. 2014;14(6):757–72.PubMedCrossRefGoogle Scholar
  69. 69.
    de Haas M, Kerst JM, van der Schoot CE, Calafat J, Hack CE, Nuijens JH, et al. Granulocyte colony-stimulating factor administration to healthy volunteers: analysis of the immediate activating effects on circulating neutrophils. Blood. 1994;84(11):3885–94.PubMedGoogle Scholar
  70. 70.
    McNiece I, Andrews R, Stewart M, Clark S, Boone T, Quesenberry P. Action of interleukin-3, G-CSF, and GM-CSF on highly enriched human hematopoietic progenitor cells: synergistic interaction of GM-CSF plus G-CSF. Blood. 1989;74(1):110–4.PubMedGoogle Scholar
  71. 71.
    McNiece IK, Briddell RA, Hartley CA, Smith KA, Andrews RG. Stem cell factor enhances in vivo effects of granulocyte colony stimulating factor for stimulating mobilization of peripheral blood progenitor cells. Stem cells (Dayton, Ohio). 1993;11(Suppl 2):36–41.Google Scholar
  72. 72.
    Moskowitz CH, Stiff P, Gordon MS, McNiece I, Ho AD, Costa JJ, et al. Recombinant methionyl human stem cell factor and filgrastim for peripheral blood progenitor cell mobilization and transplantation in non-Hodgkin’s lymphoma patients—results of a phase I/II trial. Blood. 1997;89(9):3136–47.PubMedGoogle Scholar
  73. 73.
    Stiff P, Gingrich R, Luger S, Wyres M, Brown R, LeMaistre C, et al. A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin’s disease or non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2000;26(5):471.PubMedCrossRefGoogle Scholar
  74. 74.
    Shpall EJ, Wheeler CA, Turner SA, Yanovich S, Brown RA, Pecora AL, et al. A randomized phase 3 study of peripheral blood progenitor cell mobilization with stem cell factor and filgrastim in high-risk breast cancer patients. Blood. 1999;93(8):2491–501.PubMedGoogle Scholar
  75. 75.
    Facon T, Harousseau JL, Maloisel F, Attal M, Odriozola J, Alegre A, et al. Stem cell factor in combination with filgrastim after chemotherapy improves peripheral blood progenitor cell yield and reduces apheresis requirements in multiple myeloma patients: a randomized, controlled trial. Blood. 1999;94(4):1218–25.PubMedGoogle Scholar
  76. 76.
    Duarte RF, Franf DA. The synergy between stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF): molecular basis and clinical relevance. Leuk Lymphoma. 2002;43(6):1179–87.PubMedCrossRefGoogle Scholar
  77. 77.
    Kaplan MH, Daniel C, Schindler U, Grusby MJ. Stat proteins control lymphocyte proliferation by regulating p27Kip1 expression. Mol Cell Biol. 1998;18(4):1996–2003.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hirota S, Ito A, Morii E, Wanaka A, Tohyama M, Kitamura Y, et al. Localization of mRNA for c-kit receptor and its ligand in the brain of adult rats: an analysis using in situ hybridization histochemistry. Brain Res Mol Brain Res. 1992;15(1–2):47–54.PubMedCrossRefGoogle Scholar
  79. 79.
    Manova K, Bachvarova RF, Huang EJ, Sanchez S, Pronovost SM, Velazquez E, et al. c-kit receptor and ligand expression in postnatal development of the mouse cerebellum suggests a function for c-kit in inhibitory interneurons. J Neurosci. 1992;12(12):4663–76.PubMedGoogle Scholar
  80. 80.
    Zhao LR, Singhal S, Duan WM, Mehta J, Kessler JA. Brain repair by hematopoietic growth factors in a rat model of stroke. Stroke. 2007;38(9):2584–91.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhao LR, Navalitloha Y, Singhal S, Mehta J, Piao CS, Guo WP, et al. Hematopoietic growth factors pass through the blood-brain barrier in intact rats. Exp Neurol. 2007;204(2):569–73.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gore BB, Wong KG, Tessier-Lavigne M. Stem cell factor functions as an outgrowth-promoting factor to enable axon exit from the midline intermediate target. Neuron. 2008;57(4):501–10.PubMedCrossRefGoogle Scholar
  83. 83.
    Guijarro P, Wang Y, Ying Y, Yao Y, Jieyi X, Yuan X. In vivo knockdown of cKit impairs neuronal migration and axonal extension in the cerebral cortex. Dev Neurobiol. 2013;73(12):871–87.PubMedCrossRefGoogle Scholar
  84. 84.
    Kondo T, Katafuchi T, Hori T. Stem cell factor modulates paired-pulse facilitation and long-term potentiation in the hippocampal mossy fiber-CA3 pathway in mice. Brain Res. 2002;946(2):179–90.PubMedCrossRefGoogle Scholar
  85. 85.
    Song S, Wang X, Sava V, Weeber EJ, Sanchez-Ramos J. In vivo administration of granulocyte colony-stimulating factor restores long-term depression in hippocampal slices prepared from transgenic APP/PS1 mice. J Neurosci Res. 2014;92(8):975–80.PubMedCrossRefGoogle Scholar
  86. 86.
    Frauenknecht K, Diederich K, Leukel P, Bauer H, Schabitz WR, Sommer CJ, et al. Functional improvement after photothrombotic stroke in rats is associated with different patterns of dendritic plasticity after G-CSF treatment and G-CSF treatment combined with concomitant or sequential constraint-induced movement therapy. PLoS One. 2016;11(1):e0146679.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Mashayekhi F, Gholizadeh L. Administration of anti-c-kit antibody into the cerebrospinal fluid leads to increased cell death in the developing cerebral cortex. Saudi J Biol Sci. 2011;18(3):261–6.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Jung KH, Chu K, Lee ST, Kim SJ, Sinn DI, Kim SU, et al. Granulocyte colony-stimulating factor stimulates neurogenesis via vascular endothelial growth factor with STAT activation. Brain Res. 2006;1073–1074:190–201.PubMedCrossRefGoogle Scholar
  89. 89.
    Chen WF, Hsu JH, Lin CS, Jong YJ, Yang CH, Huang LT, et al. Granulocyte-colony stimulating factor alleviates perinatal hypoxia-induced decreases in hippocampal synaptic efficacy and neurogenesis in the neonatal rat brain. Pediatr Res. 2011;70(6):589–95.PubMedCrossRefGoogle Scholar
  90. 90.
    Kim JS, Yang M, Jang H, Oui H, Kim SH, Shin T, et al. Granulocyte-colony stimulating factor ameliorates irradiation-induced suppression of hippocampal neurogenesis in adult mice. Neurosci Lett. 2010;486(1):43–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Prakash A, Medhi B, Chopra K. Granulocyte colony stimulating factor (GCSF) improves memory and neurobehavior in an amyloid-beta induced experimental model of Alzheimer’s disease. Pharmacol Biochem Behav. 2013;110:46–57.PubMedCrossRefGoogle Scholar
  92. 92.
    Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, et al. Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience. 2009;163(1):55–72.PubMedCrossRefGoogle Scholar
  93. 93.
    Schmidt AK, Reich A, Falkenburger B, Schulz JB, Brandenburg LO, Ribes S, et al. Adjuvant granulocyte colony-stimulating factor therapy results in improved spatial learning and stimulates hippocampal neurogenesis in a mouse model of pneumococcal meningitis. J Neuropathol Exp Neurol. 2015;74(1):85–94.PubMedCrossRefGoogle Scholar
  94. 94.
    Sehara Y, Hayashi T, Deguchi K, Zhang H, Tsuchiya A, Yamashita T, et al. Potentiation of neurogenesis and angiogenesis by G-CSF after focal cerebral ischemia in rats. Brain Res. 2007;1151:142–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Sehara Y, Hayashi T, Deguchi K, Zhang H, Tsuchiya A, Yamashita T, et al. G-CSF enhances stem cell proliferation in rat hippocampus after transient middle cerebral artery occlusion. Neurosci Lett. 2007;418(3):248–52.PubMedCrossRefGoogle Scholar
  96. 96.
    Tsai KJ, Tsai YC, Shen CK. G-CSF rescues the memory impairment of animal models of Alzheimer’s disease. J Exp Med. 2007;204(6):1273–80.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Yang DY, Chen YJ, Wang MF, Pan HC, Chen SY, Cheng FC. Granulocyte colony-stimulating factor enhances cellular proliferation and motor function recovery on rats subjected to traumatic brain injury. Neurol Res. 2010;32(10):1041–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Yang YN, Lin CS, Yang CH, Lai YH, Wu PL, Yang SN. Neurogenesis recovery induced by granulocyte-colony stimulating factor in neonatal rat brain after perinatal hypoxia. Pediatr Neonatol. 2013;54(6):380–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Liu XY, Gonzalez-Toledo ME, Fagan A, Duan WM, Liu Y, Zhang S, et al. Stem cell factor and granulocyte colony-stimulating factor exhibit therapeutic effects in a mouse model of CADASIL. Neurobiol Dis. 2015;73:189–203.PubMedCrossRefGoogle Scholar
  100. 100.
    Li B, Gonzalez-Toledo ME, Piao CS, Gu A, Kelley RE, Zhao LR. Stem cell factor and granulocyte colony-stimulating factor reduce beta-amyloid deposits in the brains of APP/PS1 transgenic mice. Alzheimers Res Ther. 2011;3(2):8.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49(4):489–502.PubMedCrossRefGoogle Scholar
  102. 102.
    Wu CC, Wang IF, Chiang PM, Wang LC, Shen CJ, Tsai KJ. G-CSF-mobilized bone marrow mesenchymal stem cells replenish neural lineages in Alzheimer’s disease mice via CXCR4/SDF-1 chemotaxis. Mol Neurobiol. 2016; PMID:27709493, DOI: 10.1007/s12035-016-0122-x
  103. 103.
    Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, et al. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res. 2005;1058(1–2):120–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Morita Y, Takizawa S, Kamiguchi H, Uesugi T, Kawada H, Takagi S. Administration of hematopoietic cytokines increases the expression of anti-inflammatory cytokine (IL-10) mRNA in the subacute phase after stroke. Neurosci Res. 2007;58(4):356–60.PubMedCrossRefGoogle Scholar
  105. 105.
    Fama ME, Turkeltaub PE. Treatment of poststroke aphasia: current practice and new directions. Semin Neurol. 2014;34(5):504–13.PubMedCrossRefGoogle Scholar
  106. 106.
    Johansson BB. Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke. 2000;31(1):223–30.PubMedCrossRefGoogle Scholar
  107. 107.
    Nudo R. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med. 2003;41:7–10.CrossRefGoogle Scholar
  108. 108.
    Burke SN, Barnes CA. Neural plasticity in the ageing brain. Nat Rev Neurosci. 2006;7(1):30–40.PubMedCrossRefGoogle Scholar
  109. 109.
    Anderson V, Spencer-Smith M, Wood A. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain. 2011;134(Pt 8):2197–221.PubMedCrossRefGoogle Scholar
  110. 110.
    Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK. Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J Neurosci. 2010;30(45):14964–71.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(6):1591–609.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Johansson BB, Auer LM, Sayama I. Reaction of pial arteries and veins to hypercapnia in hypertensive and normotensive rats. Stroke. 1985;16(2):320–3.PubMedCrossRefGoogle Scholar
  113. 113.
    Johansson BB. Cerebral vascular bed in hypertension and consequences for the brain. Hypertension. 1984;6(6 Pt 2):III81–6.PubMedGoogle Scholar
  114. 114.
    Barone FC, Price WJ, White RF, Willette RN, Feuerstein GZ. Genetic hypertension and increased susceptibility to cerebral ischemia. Neurosci Biobehav Rev. 1992;16(2):219–33.PubMedCrossRefGoogle Scholar
  115. 115.
    Coyle P. Different susceptibilities to cerebral infarction in spontaneously hypertensive (SHR) and normotensive Sprague-Dawley rats. Stroke. 1986;17(3):520–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Duverger D, MacKenzie ET. The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab. 1988;8(4):449–61.PubMedCrossRefGoogle Scholar
  117. 117.
    Grabowski M, Nordborg C, Brundin P, Johansson BB. Middle cerebral artery occlusion in the hypertensive and normotensive rat: a study of histopathology and behaviour. J Hypertens. 1988;6(5):405–11.PubMedCrossRefGoogle Scholar
  118. 118.
    Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–44.PubMedCrossRefGoogle Scholar
  119. 119.
    Zhao LR, Mattsson B, Johansson BB. Environmental influence on brain-derived neurotrophic factor messenger RNA expression after middle cerebral artery occlusion in spontaneously hypertensive rats. Neuroscience. 2000;97(1):177–84.PubMedCrossRefGoogle Scholar
  120. 120.
    Zhao LR, Risedal A, Wojcik A, Hejzlar J, Johansson BB, Kokaia Z. Enriched environment influences brain-derived neurotrophic factor levels in rat forebrain after focal stroke. Neurosci Lett. 2001;305(3):169–72.PubMedCrossRefGoogle Scholar
  121. 121.
    Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11–20.PubMedCrossRefGoogle Scholar
  122. 122.
    Ohlsson AL, Johansson BB. Environment influences functional outcome of cerebral infarction in rats. Stroke. 1995;26(4):644–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000;28(1):41–51.PubMedCrossRefGoogle Scholar
  124. 124.
    Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 2010;33(3):121–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Noguchi J, Nagaoka A, Watanabe S, Ellis-Davies GC, Kitamura K, Kano M, et al. In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice. J Physiol. 2011;589(Pt 10):2447–57.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of NeurosurgeryState University of New York Upstate Medical UniversitySyracuseUSA

Personalised recommendations