Skip to main content

Immunology of Gut-Bone Signaling

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1033))

Abstract

In recent years a link between the gastrointestinal tract and bone health has started to gain significant attention. Dysbiosis of the intestinal microbiota has been linked to the pathology of a number of diseases which are associated with bone loss. In addition modulation of the intestinal microbiota with probiotic bacteria has revealed to have both beneficial local and systemic effects. In the present chapter, we discuss the intestinal and bone immune systems, explore how intestinal disease affects the immune system, and examine how these pathologic changes could adversely impact bone health.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14(10):667–85.

    Article  CAS  PubMed  Google Scholar 

  2. Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014;49(6):681–9.

    Article  PubMed  Google Scholar 

  3. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31:107–33.

    Article  CAS  PubMed  Google Scholar 

  4. Oozeer R, Rescigno M, Ross RP, Knol J, Blaut M, Khlebnikov A, et al. Gut health: predictive biomarkers for preventive medicine and development of functional foods. Br J Nutr. 2010;103(10):1539–44.

    Article  CAS  PubMed  Google Scholar 

  5. Tenorio MD, Espinosa-Martos I, Préstamo G, Rupérez P. Soybean whey enhance mineral balance and caecal fermentation in rats. Eur J Nutr. 2010;49(3):155–63.

    Article  CAS  PubMed  Google Scholar 

  6. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kelsall BL, Leon F. Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease. Immunol Rev, 2005. 206:132–48.

    Google Scholar 

  8. Alpan O. Oral tolerance and gut-oriented immune response to dietary proteins. Curr Allergy Asthma Rep. 2001;1(6):572–7.

    Article  CAS  PubMed  Google Scholar 

  9. Ouellette AJ. Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol. 2010;26(6):547–53.

    Article  PubMed  Google Scholar 

  10. Cornick S, Tawiah A, Chadee K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers. 2015;3(1–2):e982426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Johansson MEV, Hansson GC. Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 2016;16(10):639–49.

    Article  CAS  PubMed  Google Scholar 

  12. Hansson GC, Johansson MEV. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes. 2010;1(1):51–4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Johansson MEV, Ambort D, Pelaseyed T, Schütte A, Gustafsson JK, Ermund A, et al. Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci. 2011;68(22):3635–41.

    Article  CAS  PubMed  Google Scholar 

  14. Cheroutre H, Lambolez F, Mucida D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat Rev Immunol. 2011;11(7):445–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shires J, Theodoridis E, Hayday AC. Biological insights into TCRgammadelta+ and TCRalphabeta+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity. 2001;15(3):419–34.

    Article  CAS  PubMed  Google Scholar 

  16. Kühl AA, Pawlowski NN, Grollich K, Loddenkemper C, Zeitz M, Hoffmann JC. Aggravation of intestinal inflammation by depletion/deficiency of gammadelta T cells in different types of IBD animal models. J Leukoc Biol. 2007;81(1):168–75.

    Article  PubMed  CAS  Google Scholar 

  17. Komano H, Fujiura Y, Kawaguchi M, Matsumoto S, Hashimoto Y, Obana S, et al. Homeostatic regulation of intestinal epithelia by intraepithelial gamma delta T cells. Proc Natl Acad Sci U S A. 1995;92(13):6147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawaguchi-Miyashita M, Shimada S, Kurosu H, Kato-Nagaoka N, Matsuoka Y, Ohwaki M, et al. An accessory role of TCRgammadelta (+) cells in the exacerbation of inflammatory bowel disease in TCRalpha mutant mice. Eur J Immunol. 2001;31(4):980–8.

    Article  CAS  PubMed  Google Scholar 

  19. Cornes JS. Number, size, and distribution of Peyer’s patches in the human small intestine: part I the development of Peyer’s patches. Gut. 1965;6(3):225–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013;6(4):666–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jung C, Hugot J-P, Barreau F. Peyer’s patches: the immune sensors of the intestine. Int J Inflam. 2010;2010:823710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Owen RL, Piazza AJ, Ermak TH. Ultrastructural and cytoarchitectural features of lymphoreticular organs in the colon and rectum of adult BALB/c mice. Am J Anat. 1991;190(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  23. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003;3(4):331–41.

    Article  CAS  PubMed  Google Scholar 

  24. Herbrand H, Bernhardt G, Förster R, Pabst O. Dynamics and function of solitary intestinal lymphoid tissue. Crit Rev Immunol. 2008;28(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  25. Tsuji M, Suzuki K, Kitamura H, Maruya M, Kinoshita K, Ivanov II, et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity. 2008;29(2):261–71.

    Article  CAS  PubMed  Google Scholar 

  26. Pabst O, Herbrand H, Worbs T, Friedrichsen M, Yan S, Hoffmann MW, et al. Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. Eur J Immunol. 2005;35(1):98–107.

    Article  CAS  PubMed  Google Scholar 

  27. Pabst O, Herbrand H, Friedrichsen M, Velaga S, Dorsch M, Berhardt G, et al. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J Immunol. 2006;177(10):6824–32.

    Article  CAS  PubMed  Google Scholar 

  28. Sathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJC, et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity. 2013;38(1):187–97.

    Article  CAS  PubMed  Google Scholar 

  29. Wolff MJ, Leung JM, Davenport M, Poles MA, Cho I, Loke P. TH17, TH22 and Treg cells are enriched in the healthy human cecum. PLoS One. 2012;7(7):e41373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brandtzaeg P. Function of mucosa-associated lymphoid tissue in antibody formation. Immunol Investig. 2010;39(4–5):303–55.

    Article  CAS  Google Scholar 

  31. Cerovic V, Bain CC, Mowat AM, Milling SWF. Intestinal macrophages and dendritic cells: what’s the difference? Trends Immunol. 2014;35(6):270–7.

    Article  CAS  PubMed  Google Scholar 

  32. Ueda Y, Kayama H, Jeon SG, Kusu T, Isaka Y, Rakugi H, et al. Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10. Int Immunol. 2010;22(12):953–62.

    Article  CAS  PubMed  Google Scholar 

  33. Persson EK, Jaensson E, Agace WW. The diverse ontogeny and function of murine small intestinal dendritic cell/macrophage subsets. Immunobiology. 2010;215(9–10):692–7.

    Article  CAS  PubMed  Google Scholar 

  34. Rescigno M. Intestinal dendritic cells. Adv Immunol. 1st ed. 2010;107(C):109–38.

    Article  CAS  PubMed  Google Scholar 

  35. Bischoff SC. Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol. 2009;31(2):185–205.

    Article  CAS  PubMed  Google Scholar 

  36. Chu VT, Beller A, Rausch S, Strandmark J, Zänker M, Arbach O, et al. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity. 2014;40(4):582–93.

    Article  CAS  PubMed  Google Scholar 

  37. Alexander JS, Ganta VC, Jordan PA, Witte MH. Gastrointestinal lymphatics in health and disease. Pathophysiol Off J Int Soc Pathophysiol. 2010;17(4):315–35.

    CAS  Google Scholar 

  38. Macpherson AJ, Smith K. Mesenteric lymph nodes at the center of immune anatomy. J Exp Med. 2006;203(3):497–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Green PHR, Cellier C. Celiac disease. N Engl J Med. 2007;357(17):1731–43.

    Article  CAS  PubMed  Google Scholar 

  40. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28(5):573–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Strober W, Fuss IJ. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1756–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14(5):329–42.

    Article  CAS  PubMed  Google Scholar 

  43. Bjarnason I, Macpherson A, Mackintosh C, Buxton-Thomas M, Forgacs I, Moniz C. Reduced bone density in patients with inflammatory bowel disease. Gut. 1997;40(2):228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zanchetta MB, Longobardi V, Bai JC. Bone and celiac disease. Curr Osteoporos Rep. 2016;14(2):43–8.

    Article  PubMed  Google Scholar 

  45. Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol. 2007;170(2):427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A. 2008;105(52):20764–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sims NA, Martin TJ. Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit. Bonekey Rep. 2014;3(August 2013):481.

    PubMed  PubMed Central  Google Scholar 

  48. Broere F, Apasov SG, Sitkovsky MV, Van EW. T cell subsets and T cell-mediated immunity. In: Nijkamp F, Parnham MJ, editors. Principles of immunopharmacology. 3rd revise ed. Basel: Birkhäuser; 2011. p. 15–28.

    Chapter  Google Scholar 

  49. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood. 2007;109(9):3839–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Toraldo G, Roggia C, Qian W-P, Pacifici R, Weitzmann MN. IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells. Proc Natl Acad Sci U S A. 2003;100(1):125–30.

    Article  CAS  PubMed  Google Scholar 

  51. Grcević D, Lee SK, Marusić A, Lorenzo JA. Depletion of CD4 and CD8 T lymphocytes in mice in vivo enhances 1,25-dihydroxyvitamin D3-stimulated osteoclast-like cell formation in vitro by a mechanism that is dependent on prostaglandin synthesis. J Immunol. 2000;165(8):4231–8.

    Article  PubMed  Google Scholar 

  52. Boyce BF, Li P, Yao Z, Zhang Q, Badell IR, Schwarz EM, et al. TNF-alpha and pathologic bone resorption. Keio J Med. 2005;54(3):127–31.

    Article  CAS  PubMed  Google Scholar 

  53. Romagnani S. T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol. 2000;85(1):9–18. 21

    Article  CAS  PubMed  Google Scholar 

  54. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4+T cells: differentiation and functions. Clin Dev Immunol. 2012;2012:925135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203(12):2673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zaiss MM, Axmann R, Zwerina J, Polzer K, Gückel E, Skapenko A, et al. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 2007;56(12):4104–12.

    Article  CAS  PubMed  Google Scholar 

  57. Mori G, D’Amelio P, Faccio R, Brunetti G. The interplay between the bone and the immune system. Clin Dev Immunol. 2013;2013:720504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Luo CY, Wang L, Sun C, Li DJ. Estrogen enhances the functions of CD4(+)CD25(+)Foxp3(+) regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell Mol Immunol. 2011;8(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  59. Kim YG, Lee C-K, Nah S-S, Mun SH, Yoo B, Moon H-B. Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem Biophys Res Commun. 2007;357(4):1046–52.

    Article  CAS  PubMed  Google Scholar 

  60. Kikuta J, Wada Y, Kowada T, Wang Z, Sun-Wada G-HH, Nishiyama I, et al. Dynamic visualization of RANKL and Th17-mediated osteoclast function. J Clin Invest. 2013;123(2):866–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pène J, Chevalier S, Preisser L, Vénéreau E, Guilleux M-HM-H, Ghannam S, et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. J Immunol. 2008;180(11):7423–30.

    Article  PubMed  Google Scholar 

  62. Choi Y, Woo KM, Ko SH, Lee YJ, Park SJ, Kim HM, et al. Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8+ T cells. Eur J Immunol. 2001;31(7):2179–88.

    Article  CAS  PubMed  Google Scholar 

  63. John V, Hock JM, Short LL, Glasebrook AL, Galvin RJ. A role for CD8+ T lymphocytes in osteoclast differentiation in vitro. Endocrinology. 1996;137(6):2457–63.

    Article  CAS  PubMed  Google Scholar 

  64. Terauchi M, Li JY, Bedi B, Baek KH, Tawfeek H, Galley S, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 2009;10(3):229–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bedi B, Li J-Y, Tawfeek H, Baek K-H, Adams J, Vangara SS, et al. Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH. Proc Natl Acad Sci U S A. 2012;109(12):E725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kiesel JR, Buchwald ZS, Aurora R. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol. 2009;182(9):5477–87.

    Article  CAS  PubMed  Google Scholar 

  67. Buchwald ZS, Kiesel JR, DiPaolo R, Pagadala MS, Aurora R. Osteoclast activated FoxP3 + CD8 + T-cells suppress bone resorption in vitro. PLoS ONE. 2012;7(6).

    Google Scholar 

  68. Buchwald ZS, Kiesel JR, Yang C, DiPaolo R, Novack DV, Aurora R. Osteoclast-induced Foxp3+ CD8 T-cells limit bone loss in mice. Bone. 2013;56(1):163–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Horowitz MC, Fretz JA, Lorenzo JA. How B cells influence bone biology in health and disease. Bone. 2010;47(3):472–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Manilay JO, Zouali M. Tight relationships between B lymphocytes and the skeletal system. Trends Mol Med. 2014;20(7):405–12.

    Article  CAS  PubMed  Google Scholar 

  71. Masuzawa T, Miyaura C, Onoe Y, Kusano K, Ohta H, Nozawa S, et al. Estrogen deficiency stimulates B lymphopoiesis in mouse bone marrow. J Clin Invest. 1994;94(3):1090–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Erlandsson MC, Jonsson CA, Islander U, Ohlsson C, Carlsten H. Oestrogen receptor specificity in oestradiol-mediated effects on B lymphopoiesis and immunoglobulin production in male mice. Immunology. 2003;108(3):346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest. 2003;111(8):1221–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Onal M, Xiong J, Chen X, Thostenson JD, Almeida M, Manolagas SC, et al. Receptor activator of nuclear factor kappa B ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J Biol Chem. 2012;287(35):29851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Weitzmann MN, Cenci S, Haug J, Brown C, DiPersio J, Pacifici R. B lymphocytes inhibit human osteoclastogenesis by secretion of TGFβ. J Cell Biochem. 2000;78(2):318–24.

    Article  CAS  PubMed  Google Scholar 

  76. Heider U, Langelotz C, Jakob C, Zavrski I, Fleissner C, Eucker J, et al. Expression of receptor activator of nuclear factor kappaB ligand on bone marrow plasma cells correlates with osteolytic bone disease in patients with multiple myeloma. Clin Cancer Res. 2003;9(4):1436–40.

    CAS  PubMed  Google Scholar 

  77. Oranger A, Carbone C, Izzo M, Grano M. Cellular mechanisms of multiple myeloma bone disease. Clin Dev Immunol. 2013;2013(8):289458.

    PubMed  PubMed Central  Google Scholar 

  78. Colucci S, Brunetti G, Oranger A, Mori G, Sardone F, Specchia G, et al. Myeloma cells suppress osteoblasts through sclerostin secretion. Blood Cancer J. 2011;1(6):e27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thorbert-Mros S, Larsson L, Berglundh T. Cellular composition of long-standing gingivitis and periodontitis lesions. J Periodontal Res. 2014;4:535–43.

    Google Scholar 

  80. Abe T, AlSarhan M, Benakanakere MR, Maekawa T, Kinane DF, Cancro MP, et al. The B cell-stimulatory cytokines BLyS and APRIL are elevated in human periodontitis and are required for B cell-dependent bone loss in experimental murine periodontitis. J Immunol. 2015;195(4):1427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Oliver-Bell J, Butcher JP, Malcolm J, Macleod MKL, Adrados Planell A, Campbell L, et al. Periodontitis in the absence of B cells and specific anti-bacterial antibody. Mol Oral Microbiol. 2015;30(2):160–9.

    Article  CAS  PubMed  Google Scholar 

  82. Wang ECY, Newton Z, Hayward OA, Clark SR, Collins F, Perks WV, et al. Regulation of early cartilage destruction in inflammatory arthritis by death receptor 3. Arthritis Rheumatol (Hoboken, NJ). 2014;66(10):2762–72.

    Article  CAS  Google Scholar 

  83. Tanaka D, Kagari T, Doi H, Shimozato T. Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis. Immunology. 2006;119(2):195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wipke BT, Allen PM. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol. 2001;167(3):1601–8.

    Article  CAS  PubMed  Google Scholar 

  85. Kantarci A, Oyaizu K, Van Dyke TE. Neutrophil-mediated tissue injury in periodontal disease pathogenesis: findings from localized aggressive periodontitis. J Periodontol. 2003;74(1):66–75.

    Article  CAS  PubMed  Google Scholar 

  86. Chakravarti A, Raquil MA, Tessier P, Poubelle PE. Surface RANKL of toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood. 2009;114(8):1633–44.

    Article  CAS  PubMed  Google Scholar 

  87. Wythe SE, Nicolaidou V, Horwood NJ. Cells of the immune system orchestrate changes in bone cell function. Calcif Tissue Int. 2014;94(1):98–111.

    Article  CAS  PubMed  Google Scholar 

  88. Rivollier A, Mazzorana M, Tebib J, Piperno M, Aitsiselmi T, Rabourdin-Combe C, et al. Immature dendritic cell transdifferentiation into osteoclasts: a novel pathway sustained by the rheumatoid arthritis microenvironment. Blood. 2004;104(13):4029–37.

    Article  CAS  PubMed  Google Scholar 

  89. Speziani C, Rivollier A, Gallois A, Coury F, Mazzorana M, Azocar O, et al. Murine dendritic cell transdifferentiation into osteoclasts is differentially regulated by innate and adaptive cytokines. Eur J Immunol. 2007;37(3):747–57.

    Article  CAS  PubMed  Google Scholar 

  90. Alnaeeli M, Penninger JM, Teng Y-TA. Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells. J Immunol. 2006;177(5):3314–26.

    Article  CAS  PubMed  Google Scholar 

  91. Maitra R, Follenzi A, Yaghoobian A, Montagna C, Merlin S, Cannizzo ES, et al. Dendritic cell-mediated in vivo bone resorption. J Immunol. 2010;185(3):1485–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-alpha on bone homeostasis. Front Immunol. 2014;5(FEB):1–9.

    Google Scholar 

  93. Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Interleukin-1B and tumor necrosis factor-a, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone. 1999;25(3):255–9.

    Article  CAS  PubMed  Google Scholar 

  94. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest. 2005;115(2):282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem. 2000;275(7):4858–64.

    Article  CAS  PubMed  Google Scholar 

  96. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106(12):1481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kitaura H, Kimura K, Ishida M, Kohara H, Yoshimatsu M, Takano-Yamamoto T. Immunological reaction in TNF alpha-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol. 2013;2013

    Google Scholar 

  98. Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol. 2002;2(5):364–71.

    Article  CAS  PubMed  Google Scholar 

  99. Kimble RB, Bain S, Pacifici R. The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J Bone Miner Res. 1997;12(6):935–41.

    Article  CAS  PubMed  Google Scholar 

  100. Frost A, Jonsson KB, Nilsson O, Ljunggren O. Inflammatory cytokines regulate proliferation of cultured human osteoblasts. Acta Orthop Scand. 1997;68(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  101. Gilbert LC, Chen H, Lu X, Nanes MS. Chronic low dose tumor necrosis factor-alpha (TNF) suppresses early bone accrual in young mice by inhibiting osteoblasts without affecting osteoclasts. Bone. 2013;56(1):174–83.

    Article  CAS  PubMed  Google Scholar 

  102. Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res. 1998;13(5):793–802.

    Article  CAS  PubMed  Google Scholar 

  103. Kawakami A, Eguchi K, Matsuoka N, Tsuboi M, Koji T, Urayama S, et al. Fas and Fas ligand interaction is necessary for human osteoblast apoptosis. J Bone Min Res. 1997;12(10):1637–46.

    Article  CAS  Google Scholar 

  104. Kovacić N, Lukić IK, Grcević D, Katavić V, Croucher P, Marusić A, et al. The Fas/Fas ligand system inhibits differentiation of murine osteoblasts but has a limited role in osteoblast and osteoclast apoptosis. J Immunol. 2007;178(6):3379–89.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Huang H, Zhao N, Xu X, Xu Y, Li S, Zhang J, et al. Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Prolif. 2011;44(5):420–7.

    Article  CAS  PubMed  Google Scholar 

  106. Bull MJ, Williams AS, Mecklenburgh Z, Calder CJ, Twohig JP, Elford C, et al. The death receptor 3-TNF-like protein 1A pathway drives adverse bone pathology in inflammatory arthritis. J Exp Med. 2008;205(11):2457–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Collins FL, Williams JO, Bloom AC, Singh RK, Jordan L, Stone MD, et al. CCL3 and MMP-9 are induced by TL1A during death receptor 3 (TNFRSF25)-dependent osteoclast function and systemic bone loss. Bone. 2017;97:94–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bamias G, Siakavellas SI, Stamatelopoulos KS, Chryssochoou E, Papamichael C, Sfikakis PP. Circulating levels of TNF-like cytokine 1A (TL1A) and its decoy receptor 3 (DcR3) in rheumatoid arthritis. Clin Immunol. 2008;129(2):249–55.

    Article  CAS  PubMed  Google Scholar 

  109. Collins FL, Williams JO, Bloom AC, Stone MD, Choy E, Wang ECY, et al. Death receptor 3 (TNFRSF25) increases mineral apposition by osteoblasts and region specific new bone formation in the axial skeleton of male DBA/1 mice. J Immunol Res. 2015;2015:1–9.

    Article  Google Scholar 

  110. Edwards JR, Sun SG, Locklin R, Shipman CM, Adamopoulos IE, Athanasou NA, et al. LIGHT (TNFSF14), a novel mediator of bone resorption, is elevated in rheumatoid arthritis. Arthritis Rheum. 2006;54(5):1451–62.

    Article  CAS  PubMed  Google Scholar 

  111. Brunetti G, Rizzi R, Oranger A, Gigante I, Mori G, Taurino G, et al. LIGHT/TNFSF14 increases osteoclastogenesis and decreases osteoblastogenesis in multiple myeloma-bone disease. Oncotarget. 2014;5(24):12950–67.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29(4):403–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Colucci S, Brunetti G, Cantatore FP, Oranger A, Mori G, Pignataro P, et al. The death receptor DR5 is involved in TRAIL-mediated human osteoclast apoptosis. Apoptosis. 2007;12(9):1623–32.

    Article  CAS  PubMed  Google Scholar 

  114. Atkins G, Bouralexis S, Evdokiou A, Hay S, Labrinidis A, Zannettino AC, et al. Human osteoblasts are resistant to Apo2L/TRAIL-mediated apoptosis. Bone. 2002;31(4):448–56.

    Article  CAS  PubMed  Google Scholar 

  115. Zauli G, Rimondi E, Stea S, Baruffaldi F, Stebel M, Zerbinati C, et al. TRAIL inhibits osteoclastic differentiation by counteracting RANKL-dependent p27Kip1 accumulation in pre-osteoclast precursors. J Cell Physiol. 2008;214(1):117–25.

    Article  CAS  PubMed  Google Scholar 

  116. Lorenzo JA, Naprta A, Rao Y, Alander C, Glaccum M, Widmer M, et al. Mice lacking the type I interleukin-1 receptor do not lose bone mass after ovariectomy. Endocrinology. 1998;139(6):3022–5.

    Article  CAS  PubMed  Google Scholar 

  117. Kimble RB, Matayoshi AB, Vannice JL, Kung VT, Williams C, Pacifici R. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology. 1995;136(7):3054–61.

    Article  CAS  PubMed  Google Scholar 

  118. Williams RO, Marinova-Mutafchieva L, Feldmann M, Maini RN. Evaluation of TNF-alpha and IL-1 blockade in collagen-induced arthritis and comparison with combined anti-TNF-alpha/anti-CD4 therapy. J Immunol. 2000;165:7240–5.

    Article  CAS  PubMed  Google Scholar 

  119. Lee Y-M, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol. 2010;22(10):805–16.

    Article  CAS  PubMed  Google Scholar 

  120. Akatsu T, Takahashi N, Udagawa N, Imamura K, Yamaguchi A, Sato K, et al. Role of prostaglandins in interleukin-1-induced bone resorption in mice in vitro. J Bone Miner Res. 1991;6(2):183–9.

    Article  CAS  PubMed  Google Scholar 

  121. Jimi E, Nakamura I, Duong LT, Ikebe T, Takahashi N, Rodan GA, et al. Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. Exp Cell Res. 1999;247(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  122. Jimi E, Shuto T, Koga T. Macrophage colony-stimulating factor and interleukin-1 alpha maintain the survival of osteoclast-like cells. Endocrinology. 1995;136(2):808–11.

    Article  CAS  PubMed  Google Scholar 

  123. Jimi E, Nakamura I, Ikebe T, Akiyama S, Takahashi N, Suda T. Activation of NF-kappaB is involved in the survival of osteoclasts promoted by interleukin-1. J Biol Chem. 1998;273(15):8799–805.

    Article  CAS  PubMed  Google Scholar 

  124. al-Humidan A, Ralston SH, Hughes DE, Chapman K, Aarden L, Russell RG, et al. Interleukin-6 does not stimulate bone resorption in neonatal mouse calvariae. J Bone Miner Res. 1991;6(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  125. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990;145(10):3297–303.

    CAS  PubMed  Google Scholar 

  126. Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S. Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem. 2008;283(17):11535–40.

    Article  CAS  PubMed  Google Scholar 

  127. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992;257(5066):88–91.

    Article  CAS  PubMed  Google Scholar 

  128. Poli V, Balena R, Fattori E, Markatos A, Yamamoto M, Tanaka H, et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 1994;13(5):1189–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Mossetti G, Rendina D, De Filippo G, Viceconti R, Di Domenico G, Cioffi M, et al. Interleukin-6 and osteoprotegerin systems in Paget’s disease of bone: relationship to risedronate treatment. Bone. 2005;36(3):549–54.

    Article  CAS  PubMed  Google Scholar 

  130. Maini RN, Taylor PC, Szechinski J, Pavelka K, Broll J, Balint G, et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum. 2006;54(9):2817–29.

    Article  CAS  PubMed  Google Scholar 

  131. Weitzmann M, Roggia C. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin …. 2002;110(11).

    Google Scholar 

  132. D’Amelio P, Grimaldi A, Bernabei P, Pescarmona GP, Isaia G. Immune system and bone metabolism: does thymectomy influence postmenopausal bone loss in humans? Bone. 2006;39(3):658–65.

    Article  PubMed  CAS  Google Scholar 

  133. Evans KE, Fox SW. Interleukin-10 inhibits osteoclastogenesis by reducing NFATc1 expression and preventing its translocation to the nucleus. BMC Cell Biol. 2007;8:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Mohamed SGK, Sugiyama E, Shinoda K, Taki H, Hounoki H, Abdel-Aziz HO, et al. Interleukin-10 inhibits RANKL-mediated expression of NFATc1 in part via suppression of c-Fos and c-Jun in RAW264.7 cells and mouse bone marrow cells. Bone. 2007;41(4):592–602.

    Article  CAS  PubMed  Google Scholar 

  135. Liu D, Yao S, Wise GE. Effect of interleukin-10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle. Eur J Oral Sci. 2006;114(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  136. Adamopoulos IE, Chao C-C, Geissler R, Laface D, Blumenschein W, Iwakura Y, et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther. 2010;12(1):R29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Adamopoulos IE, Bowman EP. Immune regulation of bone loss by Th17 cells. Arthritis Res Ther. 2008;10(5):225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Croes M, Öner FC, van Neerven D, Sabir E, Kruyt MC, Blokhuis TJ, et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone. 2016;84:262–70.

    Article  CAS  PubMed  Google Scholar 

  139. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408(6812):600–5.

    Article  CAS  PubMed  Google Scholar 

  140. Gao Y, Grassi F, Ryan MR, Terauchi M, Page K, Yang X, et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest. 2007;117(1):122–32.

    Article  CAS  PubMed  Google Scholar 

  141. Kamolmatyakul S, Chen W, Li YP. Interferon-gamma down-regulates gene expression of cathepsin K in osteoclasts and inhibits osteoclast formation. J Dent Res. 2001;80(1):351–5.

    Article  CAS  PubMed  Google Scholar 

  142. Itonaga I, Sabokbar A, Sun S, Kudo O, Danks L, Ferguson D, et al. Transforming growth factor-β induces osteoclast formation in the absence of RANKL. Bone. 2004;34(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  143. Yasui T, Kadono Y, Nakamura M, Oshima Y, Matsumoto T, Masuda H, et al. Regulation of RANKL-induced osteoclastogenesis by TGF-beta through molecular interaction between Smad3 and Traf6. J Bone Miner Res. 2011;26(7):1447–56.

    Article  CAS  PubMed  Google Scholar 

  144. Fuller K, Lean JM, Bayley KE, Wani MR, Chambers TJ. A role for TGFbeta(1) in osteoclast differentiation and survival. J Cell Sci. 2000;113(Pt 1):2445–53.

    CAS  PubMed  Google Scholar 

  145. Houde N, Chamoux E, Bisson M, Roux S. Transforming growth factor-β1 (TGF-β1) induces human osteoclast apoptosis by up-regulating bim. J Biol Chem. 2009;284(35):23397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Murakami T, Yamamoto M, Ono K, Nishikawa M, Nagata N, Motoyoshi K, et al. Transforming growth factor-beta1 increases mRNA levels of osteoclastogenesis inhibitory factor in osteoblastic/stromal cells and inhibits the survival of murine osteoclast-like cells. Biochem Biophys Res Commun. 1998;252(3):747–52.

    Article  CAS  PubMed  Google Scholar 

  147. Lian N, Lin T, Liu W, Wang W, Li N, Sun S, et al. Transforming growth factor β suppresses osteoblast differentiation via the vimentin activating transcription factor 4 (ATF4) axis. J Biol Chem. 2012;287(43):35975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Matsunobu T, Torigoe K, Ishikawa M, de Vega S, Kulkarni AB, Iwamoto Y, et al. Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Dev Biol. 2009;332(2):325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Karsdal MA, Larsen L, Engsig MT, Lou H, Ferreras M, Lochter A, et al. Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J Biol Chem. 2002;277(46):44061–7.

    Article  CAS  PubMed  Google Scholar 

  151. Caruso R, Marafini I, Sedda S, Del Vecchio BG, Giuffrida P, MacDonald TT, et al. Analysis of the cytokine profile in the duodenal mucosa of refractory coeliac disease patients. Clin Sci (Lond). 2014;126(6):451–8.

    Article  CAS  Google Scholar 

  152. Manavalan JS, Hernandez L, Shah JG, Konikkara J, Naiyer AJ, Lee AR, et al. Serum cytokine elevations in celiac disease: association with disease presentation. Hum Immunol. 2010;71(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  153. Fiore CE, Pennisi P, Ferro G, Ximenes B, Privitelli L, Mangiafico RA, et al. Altered osteoprotegerin/RANKL ratio and low bone mineral density in celiac patients on long-term treatment with gluten-free diet. Horm Metab Res. 2006;38(6):417–22.

    Article  CAS  PubMed  Google Scholar 

  154. Ciucci T, Ibáñez L, Boucoiran A, Birgy-Barelli E, Pène J, Abou-Ezzi G, et al. Bone marrow Th17 TNFα cells induce osteoclast differentiation, and link bone destruction to IBD. Gut. 2015;64(7):1072–81.

    Article  CAS  PubMed  Google Scholar 

  155. Corridoni D, Arseneau KO, Cominelli F. Inflammatory bowel disease. Immunol Lett. 2014;161(2):231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wallace KL, Zheng L-B, Kanazawa Y, Shih DQ. Immunopathology of inflammatory bowel disease. World J Gastroenterol. 2014;20(1):6–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fournier BM, Parkos CA. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012;5(4):354–66.

    Article  CAS  PubMed  Google Scholar 

  158. Grainger JR, Konkel JE, Zangerle-Murray T, Shaw TN. Macrophages in gastrointestinal homeostasis and inflammation. Pflugers Arch. 2017;469(3–4):527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Trottier MD, Irwin R, Li Y, McCabe LR, Fraker PJ. Enhanced production of early lineages of monocytic and granulocytic cells in mice with colitis. Proc Natl Acad Sci. 2012;109(41):16594–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Metzger CE, Narayanan A, Zawieja DC, Bloomfield SA. Inflammatory bowel disease in a rodent model alters osteocyte protein levels controlling bone turnover. J Bone Miner Res. 2017;32(4):802–13.

    Article  CAS  PubMed  Google Scholar 

  161. Ali T, Lam D, Bronze MS, Humphrey MB. Osteoporosis in inflammatory bowel disease. Am J Med. 2009;122(7):599–604.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Harris L, Senagore P, Young VB, McCabe LR. Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol Gastrointest Liver Physiol. 2009;296(5):G1020–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Irwin R, Lee T, Young VB, Parameswaran N, McCabe LR. Colitis-induced bone loss is gender dependent and associated with increased inflammation. Inflamm Bowel Dis. 2013;19(8):1586–97.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Irwin R, Raehtz S, Parameswaran N, McCabe LR. Intestinal inflammation without weight loss decreases bone density and growth. Am J Physiol Regul Integr Comp Physiol. 2016;311(6):R1149–57.

    Article  PubMed  Google Scholar 

  165. Stephensen CB. Burden of infection on growth failure. J Nutr. 1999;129(2S Suppl):534S–8S.

    CAS  PubMed  Google Scholar 

  166. Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O, Pasetti MF, et al. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Sci Rep. 2017;7:45270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chen HD, Frankel G. Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol Rev. 2005;29(1):83–98.

    Article  PubMed  CAS  Google Scholar 

  168. Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect. 2010;12(2):89–98.

    Article  CAS  PubMed  Google Scholar 

  169. Souza PPC, Lerner UH. The role of cytokines in inflammatory bone loss. Immunol Investig. 2013;42(7):555–622.

    Article  CAS  Google Scholar 

  170. Black RE, Brown KH, Becker S. Effects of diarrhea associated with specific enteropathogens on the growth of children in rural Bangladesh. Pediatrics. 1984;73(6):799–805.

    CAS  PubMed  Google Scholar 

  171. Steiner TS, Lima AA, Nataro JP, Guerrant RL. Enteroaggregative Escherichia coli produce intestinal inflammation and growth impairment and cause interleukin-8 release from intestinal epithelial cells. J Infect Dis. 1998;177(1):88–96.

    Article  CAS  PubMed  Google Scholar 

  172. Hsu T-R, Chen S-J, Wu T-C, Chung R-L, Tang R-B. Tumor necrosis factor-alpha and interleukin-10 in viral and bacterial gastroenteritis in children. J Chin Med Assoc. 2005;68(6):250–3.

    Article  CAS  PubMed  Google Scholar 

  173. Chen S-M, Lin C-P, Tsai J-D, Chao Y-H, Sheu J-N. The significance of serum and fecal levels of interleukin-6 and interleukin-8 in hospitalized children with acute rotavirus and norovirus gastroenteritis. Pediatr Neonatol. 2014;55(2):120–6.

    Article  PubMed  Google Scholar 

  174. Yokota K, Sato K, Miyazaki T, Kitaura H, Kayama H, Miyoshi F, et al. Combination of tumor necrosis factor α and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Arthritis Rheumatol (Hoboken, NJ). 2014;66(1):121–9.

    Article  CAS  Google Scholar 

  175. Koniaris SG, Fisher SE, Rubin CT, Chawla A. Experimental colitis impairs linear bone growth independent of nutritional factors. J Pediatr Gastroenterol Nutr. 1997;25(2):137–41.

    Article  CAS  PubMed  Google Scholar 

  176. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219–32.

    Article  CAS  PubMed  Google Scholar 

  177. Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16(7):1024–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ubeda C, Pamer EG. Antibiotics, microbiota, and immune defense. Trends Immunol. 2012;33(9):459–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sekirov I, Tam NM, Jogova M, Robertson ML, Li Y, Lupp C, et al. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun. 2008;76(10):4726–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clin Exp Allergy. 2014;44(6):842–50.

    Article  CAS  PubMed  Google Scholar 

  182. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103.

    Article  CAS  PubMed  Google Scholar 

  183. Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4(2):232–41.

    Article  CAS  PubMed  Google Scholar 

  184. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.

    Article  PubMed  Google Scholar 

  186. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Forum Nutr. 2012;4(8):1095–119.

    CAS  Google Scholar 

  188. McCabe LR, Britton RA, Parameswaran N. Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Osteoporos Int. 2015;In press.

    Google Scholar 

  189. Ohlsson C, Sjögren K. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 2015;26(2):69–74.

    Article  CAS  PubMed  Google Scholar 

  190. Sommer F, Bäckhed F. The gut microbiota – masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38.

    Article  CAS  PubMed  Google Scholar 

  191. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, et al. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci. 2016;113(47):E7554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ouwehand A, Isolauri E, Salminen S. The role of the intestinal microflora for the development of the immune system in early childhood. Eur J Nutr. 2002;41(Suppl 1):I32–7.

    PubMed  Google Scholar 

  194. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4(6):478–85.

    Article  CAS  PubMed  Google Scholar 

  195. Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M, Linehan JL, et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature. 2014;510(7503):152–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Round JL, O’Connell RM, Mazmanian SK. Coordination of tolerogenic immune responses by the commensal microbiota. J Autoimmun. 2010;34(3):J220–5.

    Article  CAS  PubMed  Google Scholar 

  197. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous clostridium species. Science. 2011;331(6015):337–41.

    Article  CAS  PubMed  Google Scholar 

  199. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Michail S, Durbin M, Turner D, Griffiths AM, Mack DR, Hyams J, et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis. 2012;18(10):1799–808.

    Article  PubMed  Google Scholar 

  202. Hill RJ, Brookes DSK, Davies PSW. Bones in pediatric Crohn’s disease: a review of fracture risk in children and adults. Inflamm Bowel Dis. 2011;17(5):1223–8.

    Article  PubMed  Google Scholar 

  203. Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transpl Int. 2009;22(11):1041–50.

    Article  CAS  PubMed  Google Scholar 

  204. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences, and reversal of immune system aging. J Clin Invest. 2013;123(3):958–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol. 2007;211(2):144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Khosla S, Melton LJ, Riggs BL. The unitary model for estrogen deficiency and the pathogenesis of osteoporosis: is a revision needed? J Bone Miner Res. 2011;26(3):441–51.

    Article  CAS  PubMed  Google Scholar 

  207. Magrone T, Jirillo E. The interaction between gut microbiota and age-related changes in immune function and inflammation. Immun Ageing. 2013;10(1):31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  209. Geiger H, de Haan G, Florian MC. The ageing haematopoietic stem cell compartment. Nat Rev Immunol. 2013;13(5):376–89.

    Article  CAS  PubMed  Google Scholar 

  210. Linehan E, Fitzgerald DC. Ageing and the immune system: focus on macrophages. Eur J Microbiol Immunol (Bp). 2015;5(1):14–24.

    Article  CAS  Google Scholar 

  211. Miller JP, Allman D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol. 2003;171(5):2326–30.

    Article  CAS  PubMed  Google Scholar 

  212. Min H, Montecino-Rodriguez E, Dorshkind K. Effects of aging on the common lymphoid progenitor to pro-B cell transition. J Immunol. 2006;176(2):1007–12.

    Article  CAS  PubMed  Google Scholar 

  213. Min H, Montecino-Rodriguez E, Dorshkind K. Reduction in the developmental potential of intrathymic T cell progenitors with age. J Immunol. 2004;173(1):245–50.

    Article  CAS  PubMed  Google Scholar 

  214. Tsuboi I, Morimoto K, Hirabayashi Y, Li G-X, Aizawa S, Mori KJ, et al. Senescent B lymphopoiesis is balanced in suppressive homeostasis: decrease in interleukin-7 and transforming growth factor-beta levels in stromal cells of senescence-accelerated mice. Exp Biol Med (Maywood). 2004;229(6):494–502.

    Article  CAS  Google Scholar 

  215. Saffrey MJ. Aging of the mammalian gastrointestinal tract: a complex organ system. Age (Omaha). 2014;36(3):1019–32.

    Article  Google Scholar 

  216. Fujihashi K, McGhee JR. Mucosal immunity and tolerance in the elderly. Mech Ageing Dev. 2004;125(12. SPEC.ISS.):889–98.

    Article  CAS  PubMed  Google Scholar 

  217. Ogino T, Miura S, Komoto S, Hara Y, Hokari R, Tsuzuki Y, et al. Senescence-associated decline of lymphocyte migration in gut-associated lymphoid tissues of rat small intestine. Mech Ageing Dev. 2004;125(3):191–9.

    Article  CAS  PubMed  Google Scholar 

  218. Schmucker DL, Owen RL, Outenreath R, Thoreux K. Basis for the age-related decline in intestinal mucosal immunity. Clin Dev Immunol. 2003;10(2–4):167–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Santiago AF, Alves AC, Oliveira RP, Fernandes RM, Paula-Silva J, Assis FA, et al. Aging correlates with reduction in regulatory-type cytokines and T cells in the gut mucosa. Immunobiology. 2011;216(10):1085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 2013;228(8):1793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Collins FL, Irwin R, Bierhalter H, Schepper J, Britton RA, Parameswaran N, et al. Lactobacillus reuteri 6475 increases bone density in intact females only under an inflammatory setting. PLoS One. 2016;11(4):e0153180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura R. McCabe or Narayanan Parameswaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Collins, F.L. et al. (2017). Immunology of Gut-Bone Signaling. In: McCabe, L., Parameswaran, N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_5

Download citation

Publish with us

Policies and ethics