Skip to main content

Regulation of Bone Metabolism by Serotonin

  • Chapter
  • First Online:
Understanding the Gut-Bone Signaling Axis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1033))

Abstract

The processes of bone growth and turnover are tightly regulated by the actions of various signaling molecules, including hormones, growth factors, and cytokines. Imbalances in these processes can lead to skeletal disorders such as osteoporosis or high bone mass disease. It is becoming increasingly clear that serotonin can act through a number of mechanisms, and at different locations in the body, to influence the balance between bone formation and resorption. Its actions on bone metabolism can vary, based on its site of synthesis (central or peripheral) as well as the cells and subtypes of receptors that are activated. Within the central nervous system, serotonergic neurons act via the hypothalamus to suppress sympathetic input to the bone. Since sympathetic input inhibits bone formation, brain serotonin has a net positive effect on bone growth. Gut-derived serotonin is thought to inhibit bone growth by attenuating osteoblast proliferation via activation of receptors on pre-osteoblasts. There is also evidence that serotonin can be synthesized within the bone and act to modulate bone metabolism. Osteoblasts, osteoclasts, and osteocytes all have the machinery to synthesize serotonin, and they also express the serotonin-reuptake transporter (SERT). Understanding the roles of serotonin in the tightly balanced system of bone modeling and remodeling is a clinically relevant goal. This knowledge can clarify bone-related side effects of drugs that affect serotonin signaling, including serotonin-specific reuptake inhibitors (SSRIs) and receptor agonists and antagonists, and it can potentially lead to therapeutic approaches for alleviating bone pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosen CJ, Bouillon R, Compston JE, Rosen V, editors. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. Ames: Wiley-Blackwell; 2013.

    Google Scholar 

  2. Dimitri P, Rosen C. The central nervous system and bone metabolism: an evolving story. Calcified tissue international. 2016.

    Google Scholar 

  3. Ducy P, Karsenty G. The two faces of serotonin in bone biology. J Cell Biol. 2010;191(1):7–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erspamer V. Experimental research on the biological significance of enterochromaffin cells. Arch Fisiol. 1937:156–9.

    Google Scholar 

  5. Rapport MM, Green AA, Page IH. Serum vasoconstrictor, serotonin; isolation and characterization. J Biol Chem. 1948;176(3):1243–51.

    CAS  PubMed  Google Scholar 

  6. Page IH, Rapport MM, Green AA. The crystallization of serotonin. J Lab Clin Med. 1948;33(12):1606.

    CAS  PubMed  Google Scholar 

  7. Erspamer V, Asero B. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature. 1952;169(4306):800–1.

    Article  CAS  PubMed  Google Scholar 

  8. Twarog BM, Page IH. Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Phys. 1953;175(1):157–61.

    CAS  Google Scholar 

  9. Hensler JG. Serotonin. In: Brady ST, editor. Basic neurochemistry principles of molecular, cellular, and medical neurobiology. 8th ed. Academic; Waltham, MA. 2012. p. 300–22.

    Google Scholar 

  10. Mawe GM, Hoffman JM. Serotonin signalling in the gut – functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10(8):473–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bertaccini G. Tissue 5-hydroxytryptamine and urinary 5-hydroxyindoleacetic acid after partial or total removal of the gastro-intestinal tract in the rat. J Physiol. 1960;153(2):239–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stunes AK, Reseland JE, Hauso O, Kidd M, Tommeras K, Waldum HL, et al. Adipocytes express a functional system for serotonin synthesis, reuptake and receptor activation. Diabetes Obes Metab. 2011;13(6):551–8.

    Article  CAS  PubMed  Google Scholar 

  13. Paulmann N, Grohmann M, Voigt JP, Bert B, Vowinckel J, Bader M, et al. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol. 2009;7(10):e1000229.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, et al. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat Med. 2010;16(7):804–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chabbi-Achengli Y, Coudert AE, Callebert J, Geoffroy V, Cote F, Collet C, et al. Decreased osteoclastogenesis in serotonin-deficient mice. Proc Natl Acad Sci U S A. 2012;109(7):2567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138(5):976–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brommage R, Liu J, Doree D, Yu W, Powell DR, Melissa Yang Q. Adult Tph2 knockout mice without brain serotonin have moderately elevated spine trabecular bone but moderately low cortical bone thickness. BoneKEy Rep. 2015;4:718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oury F, Yadav VK, Wang Y, Zhou B, Liu XS, Guo XE, et al. CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev. 2010;24(20):2330–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Motyl KJ, Rosen CJ. Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie. 2012;94(10):2089–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lam DD, Leinninger GM, Louis GW, Garfield AS, Marston OJ, Leshan RL, et al. Leptin does not directly affect CNS serotonin neurons to influence appetite. Cell Metab. 2011;13(5):584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yadav VK, Ryu JH, Suda N, Tanaka KF, Gingrich JA, Schutz G, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell. 2008;135(5):825–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23.

    Article  CAS  PubMed  Google Scholar 

  23. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346(20):1513–21.

    Article  CAS  PubMed  Google Scholar 

  24. Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA 2nd, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol. 2002;157(2):303–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kode A, Mosialou I, Silva BC, Rached MT, Zhou B, Wang J, et al. FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin. J Clin Invest. 2012;122(10):3490–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yadav VK, Balaji S, Suresh PS, Liu XS, Lu X, Li Z, et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat Med. 2010;16(3):308–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Inose H, Zhou B, Yadav VK, Guo XE, Karsenty G, Ducy P. Efficacy of serotonin inhibition in mouse models of bone loss. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26(9):2002–11.

    Google Scholar 

  28. Cui Y, Niziolek PJ, MacDonald BT, Zylstra CR, Alenina N, Robinson DR, et al. Lrp5 functions in bone to regulate bone mass. Nat Med. 2011;17(6):684–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cui Y, Niziolek PJ, MacDonald BT, Alenina N, Matthes S, Jacobsen CM, et al. Reply to Lrp5 regulation of bone mass and gut serotonin synthesis. Nat Med. 2014;20(11):1229–30.

    Article  CAS  PubMed  Google Scholar 

  30. Kode A, Obri A, Paone R, Kousteni S, Ducy P, Karsenty G. Lrp5 regulation of bone mass and serotonin synthesis in the gut. Nat Med. 2014;20(11):1228–9.

    Article  CAS  PubMed  Google Scholar 

  31. Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012;492(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  32. Warden SJ, Robling AG, Haney EM, Turner CH, Bliziotes MM. The emerging role of serotonin (5-hydroxytryptamine) in the skeleton and its mediation of the skeletal effects of low-density lipoprotein receptor-related protein 5 (LRP5). Bone. 2010;46(1):4–12.

    Article  CAS  PubMed  Google Scholar 

  33. de Vernejoul MC, Collet C, Chabbi-Achengli Y. Serotonin: good or bad for bone. BoneKEy Rep. 2012;1:120.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bliziotes MM, Eshleman AJ, Zhang XW, Wiren KM. Neurotransmitter action in osteoblasts: expression of a functional system for serotonin receptor activation and reuptake. Bone. 2001;29(5):477–86.

    Article  CAS  PubMed  Google Scholar 

  35. Warden SJ, Bliziotes MM, Wiren KM, Eshleman AJ, Turner CH. Neural regulation of bone and the skeletal effects of serotonin (5-hydroxytryptamine). Mol Cell Endocrinol. 2005;242(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  36. Warden SJ, Nelson IR, Fuchs RK, Bliziotes MM, Turner CH. Serotonin (5-hydroxytryptamine) transporter inhibition causes bone loss in adult mice independently of estrogen deficiency. Menopause (New York, NY). 2008;15(6):1176–83.

    Article  Google Scholar 

  37. Westbroek I, van der Plas A, de Rooij KE, Klein-Nulend J, Nijweide PJ. Expression of serotonin receptors in bone. J Biol Chem. 2001;276(31):28961–8.

    Article  CAS  PubMed  Google Scholar 

  38. Raap DK, Van de Kar LD. Selective serotonin reuptake inhibitors and neuroendocrine function. Life Sci. 1999;65(12):1217–35.

    Article  CAS  PubMed  Google Scholar 

  39. Le Poul E, Boni C, Hanoun N, Laporte AM, Laaris N, Chauveau J, et al. Differential adaptation of brain 5-HT1A and 5-HT1B receptors and 5-HT transporter in rats treated chronically with fluoxetine. Neuropharmacology. 2000;39(1):110–22.

    Article  PubMed  Google Scholar 

  40. Bliziotes M, Gunness M, Eshleman A, Wiren K. The role of dopamine and serotonin in regulating bone mass and strength: studies on dopamine and serotonin transporter null mice. J Musculoskelet Neuronal Interact. 2002;2(3):291–5.

    CAS  PubMed  Google Scholar 

  41. Hirai T, Tokumo K, Tsuchiya D, Nishio H. Expression of mRNA for 5-HT2 receptors and proteins related to inactivation of 5-HT in mouse osteoblasts. J Pharmacol Sci. 2009;109(2):319–23.

    Article  CAS  PubMed  Google Scholar 

  42. Bliziotes M, Eshleman A, Burt-Pichat B, Zhang XW, Hashimoto J, Wiren K, et al. Serotonin transporter and receptor expression in osteocytic MLO-Y4 cells. Bone. 2006;39(6):1313–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chabbi-Achengli Y, Launay JM, Maroteaux L, de Vernejoul MC, Collet C. Serotonin 2B receptor (5-HT2B R) signals through prostacyclin and PPAR-ss/delta in osteoblasts. PLoS One. 2013;8(9):e75783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Collet C, Schiltz C, Geoffroy V, Maroteaux L, Launay JM, de Vernejoul MC. The serotonin 5-HT2B receptor controls bone mass via osteoblast recruitment and proliferation. FASEB J Off Publ Fed Am Soc Exp Biol. 2008;22(2):418–27.

    CAS  Google Scholar 

  45. Tanaka K, Hirai T, Ishibashi Y, Izumo N, Togari A. Modulation of osteoblast differentiation and bone mass by 5-HT2A receptor signaling in mice. Eur J Pharmacol. 2015;762:150–7.

    Article  CAS  PubMed  Google Scholar 

  46. Yun HM, Park KR, Hong JT, Kim EC. Peripheral serotonin-mediated system suppresses bone development and regeneration via serotonin 6 G-protein-coupled receptor. Sci Rep. 2016;6:30985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cui C, Kaartinen MT. Serotonin (5-HT) inhibits factor XIII-A-mediated plasma fibronectin matrix assembly and crosslinking in osteoblast cultures via direct competition with transamidation. Bone. 2015;72:43–52.

    Article  CAS  PubMed  Google Scholar 

  48. Warden SJ, Fuchs RK. Do selective serotonin reuptake inhibitors (SSRIs) cause fractures? Curr Osteoporos Rep. 2016;14(5):211–8.

    Article  PubMed  Google Scholar 

  49. Rizzoli R, Cooper C, Reginster JY, Abrahamsen B, Adachi JD, Brandi ML, et al. Antidepressant medications and osteoporosis. Bone. 2012;51(3):606–13.

    Article  CAS  PubMed  Google Scholar 

  50. Mezuk B, Eaton WW, Golden SH. Depression and osteoporosis: epidemiology and potential mediating pathways. Osteoporos Int: J Established Results Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA. 2008;19(1):1–12.

    Article  CAS  Google Scholar 

  51. Dubnov-Raz G, Hemilä H, Vurembrand Y, Kuint J, Maayan-Metzger A. Maternal use of selective serotonin reuptake inhibitors during pregnancy and neonatal bone density. Early Hum Dev. 2012;88(3):191–4.

    Article  CAS  PubMed  Google Scholar 

  52. Weintrob N, Cohen D, Klipper-Aurbach Y, Zadik Z, Dickerman Z. Decreased growth during therapy with selective serotonin reuptake inhibitors. Arch Pediatr Adolesc Med. 2002;156(7):696–701.

    Article  PubMed  Google Scholar 

  53. Warden SJ, Robling AG, Sanders MS, Bliziotes MM, Turner CH. Inhibition of the serotonin (5-hydroxytryptamine) transporter reduces bone accrual during growth. Endocrinology. 2005;146(2):685–93.

    Article  CAS  PubMed  Google Scholar 

  54. Blazevic S, Erjavec I, Brizic M, Vukicevic S, Hranilovic D. Molecular background and physiological consequences of altered peripheral serotonin homeostasis in adult rats perinatally treated with tranylcypromine. J Physiol Pharmacol: Off J Pol Physiol Soc. 2015;66(4):529–37.

    CAS  Google Scholar 

  55. Bab I, Yirmiya R. Depression, selective serotonin reuptake inhibitors, and osteoporosis. Curr Osteoporos Rep. 2010;8(4):185–91.

    Article  PubMed  Google Scholar 

  56. Yirmiya R, Goshen I, Bajayo A, Kreisel T, Feldman S, Tam J, et al. Depression induces bone loss through stimulation of the sympathetic nervous system. Proc Natl Acad Sci U S A. 2006;103(45):16876–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work conducted in the author’s laboratories has been supported by NIH grants DK62267 (to GMM) and R37 DE012528 (to JBL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Lavoie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lavoie, B., Lian, J.B., Mawe, G.M. (2017). Regulation of Bone Metabolism by Serotonin. In: McCabe, L., Parameswaran, N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_3

Download citation

Publish with us

Policies and ethics