Skip to main content

Proprioception After Hip Injury, Surgery, and Rehabilitation

  • Chapter
  • First Online:
Proprioception in Orthopaedics, Sports Medicine and Rehabilitation

Abstract

This chapter discusses hip function, surgery, and rehabilitation from a proprioceptive, neuromuscular control basis. Sections include hip anatomy and pathomechanics, proprioceptive and kinesthetic considerations, hip evaluation and treatment, the hip and core/lower extremity functional linkage, and therapeutic considerations that optimize hip function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delp SL, Suryanarayanan S, Murray WM, et al. Architecture of the rectus abdominis, quadratus lumborum, and erector spinae. J Biomech. 2001;34:371–5.

    Google Scholar 

  2. Gerlach UJ, Lierse W. Functional construction of the superficial and deep fascia system of the lower limb in man. Acta Anat. 1990;139:11–25.

    Article  CAS  PubMed  Google Scholar 

  3. Gottschalk F, Kourosh S, Leveau B. The functional anatomy of tensor fasciae latae and gluteus medius and minimus. J Anat. 1989;166:179–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nyland J, Kuzemchek S, Parks M, et al. Femoral anteversion influences vastus medialis and gluteus medius EMG amplitude: composite hip abductor EMG amplitude ratios during isometric combined hip abduction-external rotation. J Electromyogr Kinesiol. 2004;14:255–61.

    Article  CAS  PubMed  Google Scholar 

  5. Brewster SF. The development of the ligament of the head of the femur. Clin Anat. 1991;4:245–55.

    Article  Google Scholar 

  6. Gray AJ, Villar RN. The ligamentum teres of the hip: an arthroscopic classification of its pathology. Arthroscopy. 1997;13:575–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kivlan B, Clemente FR, Martin RL, et al. Function of the ligamentum teres during multi-planar movement of the hip joint. Knee Surg Sports Traumatol Arthrosc. 2013;21:1664–8.

    Article  PubMed  Google Scholar 

  8. Dehao BW, Bing TK, Young JL. Understanding the ligamentum teres of the hip: a histological study. Acta Orthop Bras. 2015;23:29–33.

    Article  Google Scholar 

  9. Philippon MJ, Rasmussen MT, Turnbull TL, et al. Structural properties of the native ligamentum teres. Orthop J Sports Med. 2014;2:2325967114561962.

    PubMed  PubMed Central  Google Scholar 

  10. Martin RL, Kivlan BR, Clemente FR. A cadaveric model for ligamentum teres function: a pilot study. Knee Surg Sports Traumatol Arthrosc. 2012;21:1689–93.

    Article  PubMed  Google Scholar 

  11. Bardakos NV, Villar RN. The ligamentumteres of the adult hip. J Bone Joint Surg Br. 2009;91:8–15.

    Article  CAS  PubMed  Google Scholar 

  12. Leunig M, Beck M, Stauffer E, et al. Free nerve endings in the ligamentum capitis femoris. Acta Orthop Scand. 2000;71:452–4.

    Article  CAS  PubMed  Google Scholar 

  13. Sarban S, Baba F, Kocabey Y, et al. Free nerve endings and morphological features of the ligamentum capitis femoris in developmental dysplasia of the hip. J Pediatr Orthop. 2007;16:351–6.

    Article  Google Scholar 

  14. Byrd T. Overview and history of hip arthroscopy. In: Byrd T, editor. Operative hip arthroscopy. New York: Springer; 2013. p. 1–6.

    Chapter  Google Scholar 

  15. McCarthy JC, Lee JA. History of hip arthroscopy: challenges and opportunities. Clin Sports Med. 2011;30:217–24.

    Article  PubMed  Google Scholar 

  16. Jayasehera N, Aprato A, Villar RN. Hip arthroscopy in the presence of acetabular dysplasia. Open Orthop J. 2015;9:185–7.

    Article  Google Scholar 

  17. Gupta A, Redmond JM, Stake CE, et al. Does the femoral cam lesion regrow after osteoplasty for femoroacetabular impingement? Two-year follow-up. Am J Sports Med. 2014;42:2149–55.

    Article  PubMed  Google Scholar 

  18. Gardner E. The innervation of the hip joint. Anat Rec. 1948;101:353–71.

    Article  CAS  PubMed  Google Scholar 

  19. Rossi A, Grigg P. Characteristics of hip joint mechanoreceptors in the cat. J Neurophysiol. 1982;47:1029–42.

    Article  CAS  PubMed  Google Scholar 

  20. Hurley MV. The role of muscle weakness in the pathogenesis of osteoarthritis. Rheum Dis Clin N Am. 1999;25:283–98.

    Article  CAS  Google Scholar 

  21. Moraes MRB, Cavalcante MLC, Leite JAD, et al. The characteristics of the mechanoreceptors of the hip with arthrosis. J Orthop Surg Res. 2011;6:58.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nyland J, Wera J, Henzman C, et al. Preserving knee function following osteoarthritis diagnosis: a sustainability theory and social ecology clinical commentary. Phys Ther Sport. 2015;16:3–9.

    Article  CAS  PubMed  Google Scholar 

  23. Shakoor N, Lee KJ, Fott LF, et al. Generalized vibratory deficits in osteoarthritis of the hip. Arth Rheum. 2008;59:1237–40.

    Article  Google Scholar 

  24. Seides RM, Tan V, Hunt J, et al. Anatomy, histologic features, vascularity of the adult acetabular labrum. Clin Orthop Relat Res. 2001;382:232–40.

    Article  Google Scholar 

  25. Alzaharani A, Bali K, Gudena R, et al. The innervation of the human acetabular labrum and hip joint: an anatomic study. BMC Musculoskelet Disord. 2014;15:41. https://doi.org/10.1186/1471-2474-15-41.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Haversath M, Hanke J, Landgraeber S, et al. The distribution of nociceptive innervation in the painful hip: a histological investigation. Bone Joint. 2013;J95:770–6.

    Article  Google Scholar 

  27. Kampa RJ, Prasthofer A, Lawrence-Watt DJ, et al. The internervous safe zone for incision of the capsule of the hip. J Bone Joint Surg Br. 2007;89:971–6.

    Article  CAS  PubMed  Google Scholar 

  28. Gerhardt M, Johnson K, Atkinson R, et al. Characterisation and classification of the neural anatomy in the human hip joint. Hip Int. 2012;22:75–81.

    Article  PubMed  Google Scholar 

  29. Birnbaum K, Prescher A, Hessler S, et al. The sensory innervation of the hip joint—an anatomical study. Surg Radiol Anat. 1997;19:371–5.

    Article  CAS  PubMed  Google Scholar 

  30. Dee R. Structure and function of hip joint innervation. Ann R Coll Surg Engl. 1969;45:357–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Simons MJ, Amin NH, Cushner FD, et al. Characterization of the neural anatomy in the hip joint to optimize periarticular regional anesthesia in total hip arthroplasty. J South Orthop Assoc. 2015;24(4):221–4.

    Google Scholar 

  32. Poultsides LA, Bedi A, Kelly BT. An algorithmic approach to mechanical hip pain. HSS J. 2012;8:213–24.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pel JJM, Spoor CW, Pool-Goudzwaard AL, et al. Biomechanical analysis of reducing sacroiliac joint shear load by optimization of pelvic muscle and ligament forces. Ann Biomed Eng. 2008;36:415–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ross J. Is the sacroiliac joint mobile and how should it be treated? Br J Sports Med. 2000;34:226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gebhart JJ, Streit JJ, Bedi A, et al. Correlation of pelvic incidence with cam and pincer lesions. Am J Sports Med. 2014;42:2649–53.

    Article  PubMed  Google Scholar 

  36. Legaye J. Influence of the sagittal balance of the spine on the anterior pelvic plane and on the acetabular orientation. Int Orthop. 2009;33:1695–700.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hack K, Di Primio G, Rakhra K, et al. Prevalence of cam-type femoro-acetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg Am. 2010;92:2436–44.

    Article  PubMed  Google Scholar 

  38. Yoshimoto H, Sato S, Masuda T, et al. Spinopelvic alignment in patients with osteoarthrosis of the hip: a radiographic comparison to patients with low back pain. Spine. 2005;30:1650–7.

    Article  PubMed  Google Scholar 

  39. Larson CM. Sports hernia/athletic pubalgia: evaluation and management. Sports Health. 2014;6:139–44.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Birmingham PM, Kelly BT, Jacobs R, et al. The effect of dynamic femoro-acetabular impingement on pubic symphysis motion. A cadaveric study. Am J Sports Med. 2012;40:1113–8.

    Article  PubMed  Google Scholar 

  41. Dietz V, Berger W. Interlimb coordination of posture in patients with spastic paresis: impaired function of spinal reflexes. Brain. 1984;107:965–78.

    Article  PubMed  Google Scholar 

  42. Dietz V, Muller R, Colombo G. Locomotor activity in spinal man: significance of afferent input form joint and load receptors. Brain. 2002;125:2626–34.

    Article  PubMed  Google Scholar 

  43. Dietz V, Horstmann GA, Berger W. Interlimb coordination of leg muscle activation during perturbation of stance in humans. J Neurophysiol. 1989;62:680–93.

    Article  CAS  PubMed  Google Scholar 

  44. Granacher U, Wolf I, Wehrle A, et al. Effects of muscle fatigue on gait characteristics under single and dual-task conditions in young and older adults. J Neuroeng Rehabil. 2010;7:56.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Granacher U, Bridenbaugh S, Muehlbauer T, et al. Age-related effects on postural control under multi-task conditions. Gerontology. 2011;57:247–55.

    Article  PubMed  Google Scholar 

  46. Kressig RW, Herrmann FR, Grandjean P, et al. Gait variability while dural-tasking: fall predictor in older inpatients? Aging Clin Exp Res. 2008;20:123–30.

    Article  PubMed  Google Scholar 

  47. Beauchet O, Annweiler C, Dubost V, et al. Stops waling when talking: a predictor of falls in older adults. Eur J Neurol. 2009;16:786–95.

    Article  CAS  PubMed  Google Scholar 

  48. Freeman M. Treatment of ruptures of the lateral ligament of the ankle. J Bone Joint Surg Br. 1965;47:661–8.

    Article  CAS  PubMed  Google Scholar 

  49. Missaoui B, Portero P, Bendaya S, et al. Posture and equilibrium in orthopedic and rheumatologic diseases. Clin Neurophysiol. 2008;33:447–57.

    Article  Google Scholar 

  50. Armstrong B, McNair P, Taylor D. Head and neck position sense. Sports Med. 2008;38:101–17.

    Article  PubMed  Google Scholar 

  51. Boyd-Clark LC, Briggs CA, Galea MP. Muscle spindle distribution, morphology, and density in longus colli and multifidus muscles of the cervical spine. Spine (Phila PA 1976). 2002;27:694–701.

    Article  CAS  Google Scholar 

  52. McCloskey DI. Kinesthetic sensibility. Physiol Rev. 1978;58:763–820.

    Article  CAS  PubMed  Google Scholar 

  53. Haghpanah SA, Farahmand F, Zohoor H. Modular neuromuscular control of human locomotion by central pattern generator. J Biomech. 2017;53:154–62.

    Article  PubMed  Google Scholar 

  54. MacKay-Lyons M. Central pattern generation of locomotion: a review of the evidence. Phys Ther. 2002;82:69–83.

    Article  PubMed  Google Scholar 

  55. Burgess PR, Wei JY, Clark FJ, et al. Signaling of kinesthetic information by peripheral sensory receptors. Annu Rev Neurosci. 1982;5:171–87.

    Article  CAS  PubMed  Google Scholar 

  56. Treleaven J. Sensorimotor disturbances in neck disorders affecting postural stability, head and eye movement control. Man Ther. 2008;13:2–11.

    Article  PubMed  Google Scholar 

  57. Kulkarni V, Chandy MJ, Babu KS. Quantitative study of muscle spindles in suboccipital muscles of human fetuses. Neurol India. 2001;49:355–9.

    CAS  PubMed  Google Scholar 

  58. Liu JX, Thornell LE, Pedrosa-Domeliof F. Muscle spindles in the deep muscles of the human neck. A morphological and immunocytochemical study. J Histochem Cytochem. 2003;51:175–86.

    Article  CAS  PubMed  Google Scholar 

  59. Banks RW. A comparative analysis of the encapsulated end-organs of mammalian skeletal muscles and of their sensory nerve endings. J Anat. 2009;214:859–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Banks RW. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. J Anat. 2006;208:753–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Voss VH. Tabelle der absoluten und relative muskelspindelzahlen der menschlichen skelettmuskulatur. Anat Anz. 1971;129:562–72.

    CAS  PubMed  Google Scholar 

  62. Cibulka MT, Rose SJ, Delitto A, et al. Hamstring muscle strain treated by mobilizing the SIJ. Phys Ther. 1986;66:1220–3.

    Article  CAS  PubMed  Google Scholar 

  63. Schamberger W. The malalignment syndrome: implications for medicine and sports. Edinburgh: Churchill Livingstone; 2002.

    Google Scholar 

  64. Gabbe BJ, Finch CF, Bennell KL, et al. Risk factors for hamstring injuries in community level Australian football. Br J Sports Med. 2005;39:106–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dowling DJ. Evaluation of the pelvis. In: DiGiovanna EL, Schiowitz S, Dowling D, editors. An osteopathic approach to diagnosis and treatment. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2004. p. 304–22.

    Google Scholar 

  66. Day BL, Marsden CD, Obeso JA, et al. Reciprocal inhibition between the muscles of the human forearm. J Physiol. 1984;349:519–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Makofsky H, Panicker S, Abbruzzese J, et al. Immediate effect of grade IV inferior hip joint mobilization on hip abductor torque: a pilot study. J Manual Manipulative Ther. 2007;15:103–11.

    Article  Google Scholar 

  68. Yerys S, Makofsky H, Byrd C, et al. Effect of mobilization of the anterior hip capsule on gluteus maximus strength. J Manual Manipulative Ther. 2002;10:218–24.

    Article  Google Scholar 

  69. Elphington J. Stability, sport and performance movement: great technique without injury. Berkeley, CA: Lotus Publishing; 2008.

    Google Scholar 

  70. Fox M. Effect on hamstring flexibility of hamstring stretching compared to hamstring stretching and sacroiliac joint manipulation. Clin Chiropr. 2006;9:21–32.

    Article  Google Scholar 

  71. Pool-Goudzwaard AL, Vleeming A, Stoeckart R, et al. Insufficient lumbopelvic stability: a clinical, anatomical and biomechanical approach to ‘a-specific’ low back pain. Man Ther. 1998;3:12–20.

    Article  PubMed  Google Scholar 

  72. Janda V. Muscles, central nervous motor regulation and back problems. In: Korr I, editor. The neurobiological mechanisms in manipulative therapy. New York: Plenum Press; 1978.

    Google Scholar 

  73. Norris C. Spinal stabilization: an exercise programme to enhance lumbar stabilization. Physiotherapy. 1995;81:31–8.

    Article  Google Scholar 

  74. Hewett TE, Myer GD. The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc Sport Sci Rev. 2011;39:161–6.

    PubMed  PubMed Central  Google Scholar 

  75. Stearns KM, Powers CM. Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Am J Sports Med. 2014;42:602–9.

    Article  PubMed  Google Scholar 

  76. Zati A, Degli Esposti S, Spagnoletti C, et al. Does total hip arthroplasty mean sensorial and proprioceptive lesion? A clinical study. Chir Organi Mov. 1997;82:239–47.

    Google Scholar 

  77. Ishii Y, Tojo T, Terajima K, et al. Intracapsular components do not change hip proprioception. J Bone Joint Surg Br. 1999;81:345–8.

    Article  CAS  PubMed  Google Scholar 

  78. Agricola R, Waarsing J, Arden N, et al. Cam impingement of the hip—a risk factor for hip osteoarthritis. Nat Rev Rheumatol. 2013;9:630–4.

    Article  PubMed  Google Scholar 

  79. Freke MD, Kemp J, Svege I, et al. Physical impairments in symptomatic femoroacetabular impingement: a systematic review of the evidence. Br J Sports Med. 2016;50:1180.

    Article  PubMed  Google Scholar 

  80. Kemp J, Makdissi M, Schache A, et al. Is quality of life following hip arthroscopy in patients with chondrolabral pathology associated with impairments in hip strength or range of motion? Knee Surg Sports Traumatol Arthrosc. 2015;24:3955–61. https://doi.org/10.1007/s00167-015-3679-4.

    Article  PubMed  Google Scholar 

  81. Enseki KR, Kohlrieser D. Rehabilitation following hip arthroscopy: an evolving process. Int J Sports Phys Ther. 2014;9:765–73.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nyland D.P.T., S.C.S., Ed.D., A.T.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nyland, J., Mei-Dan, O., MacKinlay, K., Calik, M., Kaya, D., Doral, M.N. (2018). Proprioception After Hip Injury, Surgery, and Rehabilitation. In: Kaya, D., Yosmaoglu, B., Doral, M. (eds) Proprioception in Orthopaedics, Sports Medicine and Rehabilitation. Springer, Cham. https://doi.org/10.1007/978-3-319-66640-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66640-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66639-6

  • Online ISBN: 978-3-319-66640-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics