Proprioceptive Rehabilitation After Spine Injury and Surgery

  • Yildiz Erdoganoglu
  • Sevil Bilgin


Spine plays an important role in generating proprioceptive input impulse. Proprioceptive inputs provide sensation of movement and posture. The important effects of the spine elements on proprioception, joint position, kinesthesia, functional movement, and posture are well known. The possible alterations in proprioception after spine injury, surgery, and rehabilitation are discussed in details in this chapter.


Kinesthesia Joint position sense Vertebral column 


  1. 1.
    Gray H. Anatomy of the human body. [Online Ed.]. 2000.
  2. 2.
    Yaszemski MJ, Augustua AW, Panjabi MM. Biomechanics of the spine. In: Fardon DF, Garfin SR, editors. Orthopaedic knowledge update: spine 2. 2nd ed. Rosemont: American Academy of Orthopaedic Surgeons; 2002. p. 15–23.Google Scholar
  3. 3.
    Kiefer A, Shirazi-Adl A, Parnianpour M. Synergy of the human spine in neutral postures. Eur Spine J. 1998;7:471–9.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Oğuz H. Bel Ağrıları. In: Oğuz H, editor. Tıbbi rehabilitasyon. İstanbul: Nobel Kitapevi; 2004. p. 1131–17.Google Scholar
  5. 5.
    Şar C. Lomber Omurganın Anatomik Özellikleri. In: Özcan E, Ketenci A, editors. Bel Ağrısı Tanı ve Tedavi. İstanbul: Nobel Kitapevi; 2002. p. 9–20.Google Scholar
  6. 6.
    Drake RL, Vogl W, Mitchell AWM. Gray’s anatomi. Ankara: Güneş Tıp Kitabevleri; 2007.Google Scholar
  7. 7.
    Bland JH, Boushey DR. Anatomy and physiology of the cervical spine. Semin Arthritis Rheum. 1990;20:1–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Blakney M, Hertling D. The cervical spine. In: Hertling D, Kesler RM, editors. Management of common musculoskeletal disorders. 3rd ed. Philadelphia: Lippincott-Raven Publisher; 1996. p. 528–58.Google Scholar
  9. 9.
    Cramer GD. The cervical region. In: Cramer GD, Darby SA, editors. Basic and clinical anatomy of the spine spinal cord and ANS. 2nd ed. Missouri: Mosby; 2005. p. 142–209.Google Scholar
  10. 10.
    Gatterman MI. Chiropractic management of neck pain of mechanical origin. In: Giles LGF, Singer KP, editors. Clinical anatomy and management of cervical spine pain, vol. 2. Oxford: Butterworth-Heinemann; 1998. p. 21–5.Google Scholar
  11. 11.
    MacKinnon PCB, Morris JF. Oxford textbook of functional anatomy: head and neck. 2nd ed. New York: Oxford University; 2005. p. 55–62.Google Scholar
  12. 12.
    Waugh A, Grant A. Anatomy and physiology in health and illness. UK: Elsevier Limited; 2011. p. 414–7.Google Scholar
  13. 13.
    Gosselin G, Rassoulian H, Brown I. Effects of neck extensor muscles fatigue on balance. Clin Biomech (Bristol, Avon). 2004;19(5):473–9.CrossRefGoogle Scholar
  14. 14.
    Jackson R. The cervical syndrome. Clin Orthop. 1977:138–48.Google Scholar
  15. 15.
    Sedov AS, Raeva SN, Pavlenko VB. Neuronal mechanisms of motor signal transmission in thalamic Voi nucleus in spasmodic torticollis patients. Fiziol Cheloveka. 2014;40(3):28–35.PubMedGoogle Scholar
  16. 16.
    McRae R. Clinical orthopaedic examination. 2nd ed. London: Churchill Livingstone; 1983.Google Scholar
  17. 17.
    Frymoyer JW. The adult spine principles and practice. 2nd ed. Philadelphia: Lippincott; 1996.Google Scholar
  18. 18.
    Field S, Treleaven J, Jull G. Standing balance: a comparison between idiopathic and whiplash-induced neck pain. Man Ther. 2008;13(3):183–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Mathis JM. Percutaneous vertebroplasty and kyphoplasty. Spine Anat. 2006:10.Google Scholar
  20. 20.
    Dutton M. Dutton’s ortopeadic examination evaluation and intervention. McGraw Hill professional; 2012.Google Scholar
  21. 21.
    Neumann DA. Kinesiology of the musculuskeletal system: foundations for rehabilitation. St. Louis: Elsevier Healty Sciences; 2013.Google Scholar
  22. 22.
    Wood KB, Garvey TA, Gundry C, Heithoff KB. Magnetic resonance imaging of the thoracic spine. Evaluation of asymptomatic individuals. J Bone Joint Surg Am. 1995;77(11):1631–8.PubMedCrossRefGoogle Scholar
  23. 23.
    O’Rahilly R. Basic human anatomy. Philadelphia: Saunders; 1986.Google Scholar
  24. 24.
    Little JP, Adam CJ. Effects of surgical joint destabilization on load sharing between ligamentous structures in the thoracic spine: a finite element investigation. Clin Biomech. 2011;26:895–903.CrossRefGoogle Scholar
  25. 25.
    Ibrahim AF, Darwish HH. The costotransverse ligaments in human: a detailed anatomy study. Clin Anat. 2005;18:340–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J. 1994;3:184–201.PubMedCrossRefGoogle Scholar
  27. 27.
    Lenke LG, Sides BA, Koester LA, Hensley M, Blanke KM. Vertebral column resection for the treatment of severe spinal deformity. Clin Orthop Relat Res. 2010;468(3):687–99.PubMedCrossRefGoogle Scholar
  28. 28.
    Neviaser A, Toro-Arbelaez JB, Lane JM. Is kyphoplasty the standard of care for compression fractures in the spine, especially in the elderly? Am J Orthop. 2005;34:425–9.PubMedGoogle Scholar
  29. 29.
    Haher T, Merola AA. Surgical techniques for the spine. New York: Thieme Medical Publisher; 2003.CrossRefGoogle Scholar
  30. 30.
    Lonstein JE. Patient evaluation. MOE’S textbook of scoliosis and other spinal deformities. Philadelphia: W.B. Saunders Company; 1995. p. 45–85.Google Scholar
  31. 31.
    Freeman B, Canale ST. Campbell’s operative orthopaedics. Philadelphia: Mosby; 2003. p. 1751–837.Google Scholar
  32. 32.
    Melman C, Al-Sayyad MJ, Crawford AH. Effectiveness of Spinal Release and Halo-Femoral Traction in the Management of Severe Spinal Deformity. 2004;24(6):667–73.Google Scholar
  33. 33.
    Lowe TG, Edgar M, Margulies JY, Miller NH, Raso VJ, Reinker KA, Rivard CH. Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am. 2000;82-A(8):1157–68.PubMedCrossRefGoogle Scholar
  34. 34.
    Kindsfater K, Lowe T, Lawellin D, Weinstein D, Akmakjian J. Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis. J Bone Joint Surg Am. 1994;76(8):1186–92.PubMedCrossRefGoogle Scholar
  35. 35.
    Tsiligiannis T, Grivas T. Pulmonary function in children with idiopathic scoliosis. Scoliosis. 2012;7:7.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Weiss HR. Spinal deformities rehabilitation—state of the art review. Scoliosis. 2010;5:28.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Cohen SP, Raja SN. Pathogenesis, diagnosis, and treatment of lumbar zygapophysial [facet] joint pain. Anesthesiology. 2007;106(3):591–614.PubMedCrossRefGoogle Scholar
  38. 38.
    Bogduk N. Clinical anatomy of the lumbal spine and sacrum. New York: Churcill Livingstone; 1997.Google Scholar
  39. 39.
    Adams MA. The biomechanics of back pain. Edinburg, New York: Churchill Livingstone; 2002.Google Scholar
  40. 40.
    Hukins DWL, Kirby MC, Sirkoyn TA, Aspden RM, Cox AJ. Comparison of structure, mechanical properties and functions of lumbar spinal ligaments. Spine. 1990;15(8):787–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Panjabi M. The stabilising system of the spine. Part II. Neutral zone and stability hypothesis. J Spinal Disord. 1992;5:390–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Krismer M, Haid C, Ogon M, Behensky H, Wimmer C. Biomechanics of lumbar instability. Orthopade. 1997;26(6):516–20.PubMedGoogle Scholar
  43. 43.
    van Vliet PM, Henegan NR. Motor control and the management of musculoskeletal dysfunction. Man Ther. 2006;11(3):208–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Mannion AF, Weber BR, Dvorak J, Grob D, Müntener M. Fibre type characteristics of the lumbar paraspinal muscles in normal healthy subjects and in patients with low back pain. J Orthop Res. 1997;15(6):881–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Wu PB, Date ES, Kingery WS. The lumbar multifidus muscle in polysegmentally innervated. Electromyogr Clin Neurophysiol. 2000;40(8):483–5.PubMedGoogle Scholar
  46. 46.
    Chan D, Song Y, Sham P. Genetics of disc herniation. Eur Spine J. 2006;7:586–96.Google Scholar
  47. 47.
    Cholewicki J, McGill SM. Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech. 1996;11(1):1–15.CrossRefGoogle Scholar
  48. 48.
    Boerger TO, Limb D, Dickson RA. Does ‘canal clearance’ affect neurological outcome after thoracolumbar burst fractures? J Bone Joint Surg Br. 2000;82:629–35.PubMedCrossRefGoogle Scholar
  49. 49.
    Yogandan N, Halliday A, Dicman C. Practical anatomy and fundamental biomecanics spine surgery. Techniques. In: Benzel EC, editor. Complication avoidance and management. 2nd ed. Philadelphia: Livingstone; 1999. p. 113–7.Google Scholar
  50. 50.
    Fagan A, Moore R, Vernon Roberts B, Blumbergs P, Fraser R. ISSLS prize winner the innervation of the intervertebral disc: a quantitative analysis. Spine (Phila Pa 1976). 2003;28:2570–6.CrossRefGoogle Scholar
  51. 51.
    Roberts S, Eisenstein SM, Menage J, Evans EH, Ashton IK. Mechanoreceptors in intervertebral discs. Morphology, distribution, and neuropeptides. Spine (Phila Pa 1976). 1995;20:2645–51.CrossRefGoogle Scholar
  52. 52.
    Logroscino G, Mazza O, Aulisa A, Pitta L, Pola E, Aulisa L. Spondylolysis and spondylolisthesis in the pediatric and adolescent population. Childs Nerv Syst. 2001;17(11):644–55.PubMedCrossRefGoogle Scholar
  53. 53.
    Syrmou E, Tsitsopoulos PP, Marinopoulos D, Tsonidis C, Anagnostopoulos I, Tsitsopoulos PD. Spondylolysis: a review and reappraisal. Hippokratia. 2010;14(1):17–21.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Standaert CJ. The diagnosis and management of lumbar spondylolysis. Oper Tech Sports Med. 2005;13(2):101–7.CrossRefGoogle Scholar
  55. 55.
    Stanitski CL. Spondylolysis and spondylolisthesis in athletes. Oper Tech Sports Med. 2006;14(3):141–6.CrossRefGoogle Scholar
  56. 56.
    Fitzgerald JA, Newman PH. Degenerative spondylolisthesis. J Bone Joint Surg Br. 1976;58:184–92.PubMedCrossRefGoogle Scholar
  57. 57.
    North American Spine Society. Diagnosis and treatment of degenerative lumbar spondylolisthesis. 2nd ed. Burr Ridge, IL: North American Spine Society; 2014. Google Scholar
  58. 58.
    Katz JN, Harris MB. Clinical practice. Lumbar spinal stenosis. N Engl J Med. 2008;358(8):818–25.PubMedCrossRefGoogle Scholar
  59. 59.
    Binder DK, Schmidt MH, Weinstein PR. Lumbar spinal stenosis. Semin Neurol Jun. 2002;22(2):157–66.CrossRefGoogle Scholar
  60. 60.
    Katz JN, Dalgas M, Stucki G, Katz NP, Bayley J, Fossel AH, Chang LC, Lipson SJ. Degenerative lumbar spinal stenosis. Diagnostic value of the history and physical examination. Arthritis Rheum. 1995;38(9):1236–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Gilman S. Joint position sense and vibration sense: anatomical organisation and assessment. J Neurol Neurosurg Psychiatry. 2002;73:473–7.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Proske U. What is the role of muscle receptors in proprioception? Muscle Nerve. 2005;31:780–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Johnson EO, Babis GC, Soultanis KC, Soucacos PN. Functional neuroanatomy of proprioception. J Surg Orthop Adv. 2008;17:159–64.PubMedGoogle Scholar
  64. 64.
    Malmström E-M. Cervical influence on dizziness and orientation. Lund: Department of Otorhinolaryngology, Head and Neck Surgery, Clinical Sciences, Lund and Department of Health Sciences, Division of Physiotherapy Lund University; 2008. p. 57.Google Scholar
  65. 65.
    Malmström EM, Karlberg M, Melander A, Magnusson M, Moritz U. Cervicogenic dizziness – musculoskeletal findings before and after treatment and long-term outcome. Disabil Rehabil. 2007;29(15):1193–205.PubMedCrossRefGoogle Scholar
  66. 66.
    Preuss R, Fung J. Can acute low back pain result from segmental spinal buckling during submaximal activities? A review of the current literature. Man Ther. 2005;10:14–20.PubMedCrossRefGoogle Scholar
  67. 67.
    Swinkels A, Dolan P. Spinal position sense is independent of the magnitude of movement. Spine (Phila Pa 1976). 2000;25:98–104.CrossRefGoogle Scholar
  68. 68.
    Gill KP, Callaghan MJ. The measurement of lumbar proprioception in individuals with and without low back pain. JMPT. 1998;21(10):582.Google Scholar
  69. 69.
    Brumagne S, Cordo P, Lysens R, Verschueren S, Swinnen S. The role of paraspinals muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine. 2000;25(8):989–94.PubMedCrossRefGoogle Scholar
  70. 70.
    Pettibon B. Spinal biomechanics: detection and correction of the spinal system’s subluxation; part 18. Chiropr J. 1997;12(2):30–2.Google Scholar
  71. 71.
    Peterka RJ, Loughlin PJ. Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol. 2004;91:410–23.PubMedCrossRefGoogle Scholar
  72. 72.
    Simoneau M, Tinker SW, Hain TC, Lee WA. Effects of predictive mechanisms on head stability during forward trunk perturbation. Exp Brain Res. 2003;148:338–49.PubMedCrossRefGoogle Scholar
  73. 73.
    Ghez C. Voluntary movement. In: Kandel E, Schwartz J, Jessell T, editors. Principles of neural science. London: Prentice-Hall International Inc; 1991. p. 609–25.Google Scholar
  74. 74.
    Shumway-Cook A, Woollacott M. Motor control. Theory and practical applications. Philadelphia: Lippincott Williams & Wilkins; 2001.Google Scholar
  75. 75.
    Martin J, Jessell T. Modality coding in the somatic sensory system. In: Kandel E, Schwartz J, Jessell T, editors. Principles of neural science. London: Prentice-Hall International Inc; 1991. p. 341–52.Google Scholar
  76. 76.
    Rothwell J. Control of human voluntary movement. London: Chapman and Hall; 1994.CrossRefGoogle Scholar
  77. 77.
    Dhillon MS, Bali K, Prabhakar S. Proprioception in anterior cruciate ligament deficient knees and its relevance in anterior cruciate ligament reconstruction. Indian J Orthop. 2011;45(4):294–300.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Janssens L, Brumagne S, Claeys K, Pijnenburg M, Goossens N, Rummens S, Depreitere B. Proprioceptive use and sit-to-stand-to-sit after lumbar microdiscectomy: the effect of surgical approach and early physiotherapy. Clin Biomech. 2016;32:40–8.CrossRefGoogle Scholar
  79. 79.
    Haavik H, Murphy B. The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control. J Electromyogr Kinesiol. 2012;22(5):768–76.PubMedCrossRefGoogle Scholar
  80. 80.
    Adkins DL, Boychuk J, Remple MS, et al. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol. 2006;101(6):1776–82.PubMedCrossRefGoogle Scholar
  81. 81.
    Tsao H, Galea M, Hodges P. Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain. Brain. 2008;131(8):2161–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Tsao H, Galea MP, Hodges PW. Driving plasticity in the motor cortex in recurrent low back pain. Eur J Pain. 2010;14(8):832–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Chiou S, Shih Y, Chou L, et al. Impaired neural drive in patients with low back pain. Eur J Pain. 2014;18(6):794–802.PubMedCrossRefGoogle Scholar
  84. 84.
    Bergmark A. Stability of the lumbar spine: a study in mechanical engineering. Acta Orthop Scand. 1989;60(Suppl 230):1–54.CrossRefGoogle Scholar
  85. 85.
    Solomonow M, Zhou B, Baratta R, et al. Neuromuscular disorders associated with static lumbar flexion: a feline model. J Electromyogr Kinesiol. 2002;12(2):81–90.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhu X, Shin G. Kinematics and muscle activities of the lumbar spine during and after working in stooped postures. J Electromyogr Kinesiol. 2013;23(4):801–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Shin G, D’Souza C. EMG activity of low back extensor muscles during cyclic flexion/extension. J Electromyogr Kinesiol. 2010;20(4):742–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Storheim K, Berg L, Hellum C, et al. Fat in the lumbar multifidus muscles – predictive value and change following disc prosthesis surgery and multidisciplinary rehabilitation in patients with chronic low back pain and degenerative disc: 2-year follow-up of a randomized trial. BMC Musculoskelet Disord. 2017;18(1):145.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Bresnahan LE, Smith JS, Ogden AT, et al. Assessment of Paraspinal muscle cross-sectional area after lumbar decompression: minimally invasive versus open approaches. Clin Spine Surg. 2017;30(3):162–8.Google Scholar
  90. 90.
    Hides J, Stanton W, Mendis MD, et al. The relationship of transversus abdominis and lumbar multifidus clinical muscle tests in patients with chronic low back pain. Man Ther. 2011;16(6):573–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Lee AS, Cholewicki J, Reeves NP, et al. Comparison of trunk proprioception between patients with low back pain and healthy controls. Arch Phys Med Rehabil. 2010;91:1327–31.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    O’Sullivan PB, Burnett A, Floyd AN, et al. Lumbar repositioning deficit in a specific low back pain population. Spine (Phila Pa 1976). 2003;28(10):1074–9.CrossRefGoogle Scholar
  93. 93.
    Richardson CA, Snijders CJ, Hides JA, et al. The relation between the transversus abdominis muscles, sacroiliac joint mechanics, and low back pain. Spine. 2002;27(4):399–405.PubMedCrossRefGoogle Scholar
  94. 94.
    Hides J, Wilson S, Stanton W, et al. An MRI İnvestigation İnto the function of the transversus abdominis muscle during “drawing-İn” of the Abdominal Wall. Spine. 2006;31(6):175–8.CrossRefGoogle Scholar
  95. 95.
    Hides JA, Miokovic T, Belavý DL, et al. Ultrasound İmaging assessment of abdominal muscle function during drawing-İn of the abdominal wall: an İntrarater reliability study. J Orthop Sports Phys Ther. 2007;37(8):480–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Shirley D, Hodges P, Eriksson A, et al. Spinal stiffness changes throughout the respiratory cycle. J Appl Physiol. 2003;95(4):1467–75.PubMedCrossRefGoogle Scholar
  97. 97.
    Bø K, Sherburn M, Allen T. Transabdominal ultrasound measurement of pelvic flor muscle activity when activated directly or via a transversus abdominis muscle contraction. Neurourol Urodyn. 2003;22(6):582–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Critchley D. Instructing pelvic floor contraction facilitates transversus abdominis thickness increase during low-abdominal hollowing. Physiother Res Int. 2002;7(2):65–75.PubMedCrossRefGoogle Scholar
  99. 99.
    Boudreau SA, Farina D, Falla D. The role of motor learning and neuroplasticity in designing rehabilitation approaches for musculoskeletal pain disorders. Man Ther. 2010;15(5):410–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Lluch E, Schomacher J, Gizzi L, et al. Immediate effects of active cranio-cervical flexion exercise versus passive mobilisation of the upper cervical spine on pain and performance on the cranio-cervical flexion test. Man Ther. 2014;19(1):25–31.PubMedCrossRefGoogle Scholar
  101. 101.
    Jull G, Sterling M, Falla D. Wiplash, headache and neck pain: research-based directions for physical therapies. Edinburg: Elsevier; 2008.Google Scholar
  102. 102.
    Mayoux-Benhamou MA, Revel M, Vallée C, et al. Longus colli has a postural function on cervical curvature. Surg Radiol Anat. 1994;16(4):367–71.PubMedCrossRefGoogle Scholar
  103. 103.
    Mayoux-Benhamou MA, Revel M, Vallee C, et al. Selective electromyography of dorsal neck muscles in humans. Exp Brain Res. 1997;113(2):353–60.PubMedCrossRefGoogle Scholar
  104. 104.
    Jun I, Kim K. A comparison of the deep cervical flexor muscle thicknesses in subjects with and without neck pain during craniocervical flexion exercises. J Phys Ther Sci. 2013;25(11):1373–5.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Jull G, Kristjansson E, Dall'Alba P. Impairment in the cervical flexors: a comparison of whiplash and insidious onset neck pain patients. Man Ther. 2004;9(2):89–94.PubMedCrossRefGoogle Scholar
  106. 106.
    Jull GA, O'Leary SP, Falla DL. Clinical assessment of the deep cervical flexor muscles: the craniocervical flexion test. J Manip Physiol Ther. 2008;31(7):525–33.CrossRefGoogle Scholar
  107. 107.
    Falla DL, Jull GA, Hodges PW. Patients with neck pain demonstrate reduced electromyographic activity of the deep cervical flexor muscles during performance of the craniocervical flexion test. Spine. 2004;29(19):2108–014.PubMedCrossRefGoogle Scholar
  108. 108.
    Iqbal ZA, Rajan R, Khan SA, et al. Effect of deep cervical flexor muscles training using pressure biofeedback on pain and disability of school teachers with neck pain. J Phys Ther Sci. 2013;25(6):657–61.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Jull GA, Falla D, Vicenzino B, et al. The effect of therapeutic exercise on activation of the deep cervical flexor muscles in people with chronic neck pain. Man Ther. 2009;14(6):696–701.PubMedCrossRefGoogle Scholar
  110. 110.
    James G, Doe T. The craniocervical flexion test: intra-tester reliability in asymptomatic subjects. Physiother Res Int. 2010;15(3):144–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Falla DL, Campbell CD, Fagan AE, et al. Relationship between cranio-cervical flexion range of motion and pressure change during the cranio-cervical flexion test. Man Ther. 2003;8(2):92–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Falla D, O'Leary S, Farina D, et al. The change in deep cervical flexor activity after training is associated with the degree of pain reduction in patients with chronic neck pain. Clin J Pain. 2012;28(7):628–34.PubMedCrossRefGoogle Scholar
  113. 113.
    De Gail P, Lance JW, Neilson PD. Differential effects on tonic and phasic reflex mechanisms produced by vibration of muscles in man. J Neurol Neurosurg Psychiatry. 1966;29(1):1–11.PubMedCentralPubMedCrossRefGoogle Scholar
  114. 114.
    Aaboe J, Henriksen M, Christensen R, et al. Effect of whole body vibration exercise on muscle strength and proprioception in females with knee osteoarthritis. Knee. 2009;16(4):256–61.PubMedCrossRefGoogle Scholar
  115. 115.
    Gandevia SC, Smith JL, Crawford M, et al. Motor commands contribute to human position sense. J Physiol. 2006;571(3):703–10.PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Beinert K, Preiss S, Huber M, et al. Cervical joint position sense in neck pain. Immediate effects of muscle vibration versus mental training interventions: a RCT. Eur J Phys Rehabil Med. 2015;51(6):825–32.PubMedGoogle Scholar
  117. 117.
    Beinert K, Keller M, Taube W. Neck muscle vibration can improve sensorimotor function in patients with neck pain. Spine J. 2015;15(3):514–21.PubMedCrossRefGoogle Scholar
  118. 118.
    Moyer CA, Rounds J, Hannum JW. A meta-analysis of massage therapy research. Psychol Bull. 2004;130:3–18.PubMedCrossRefGoogle Scholar
  119. 119.
    Sagar SM, Dryden T, Wong RK. Massage therapy for cancer patients: a reciprocal relationship between body and mind. Curr Oncol. 2007;14:45–56.PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Crane JD, Ogborn DI, Cupido C. Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci Transl Med. 2012;4:119.CrossRefGoogle Scholar
  121. 121.
    Morhen V, Beavin LE, Zak PJ. Massage increases oxytocin and reduces adrenocorticotropin hormone in humans. Altern Ther Health Med. 2012;18:11018.Google Scholar
  122. 122.
    Sefton JM, Yarar C, Carpenter DM, Berry JW. Physiologic and clinical changes after therapeutic massage of the neck and shoulders. Man Ther. 2011;16:487–94.PubMedCrossRefGoogle Scholar
  123. 123.
    Topolska M, Chrzan S, Sapula R. Evaluation of the effectiveness of therapeutic massage in patients with neck pain. Ortop Traumatol Rehabil. 2012;14:115–24.PubMedCrossRefGoogle Scholar
  124. 124.
    Frobell R, Le Graverand M, Buck R, Roos E, Roos H, Tamez-Pena J. The acutely ACL injured knee assessed by MRI: changes in joint fluid, bone marrow lesions, and cartilage during the first year. Osteoarthr Cartil. 2009;17(2):161–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Baxendale R, Ferrell W. Disturbances of proprioception at the human knee resultingfrom acute joint distension. J Physiol. 1987;392:60.Google Scholar
  126. 126.
    Cho Y, Hong B, Lim S, Kim H, Ko Y, Im S. Effects of joint effusion on proprioception in patients with knee osteoarthritis: a single-blind, randomized controlled clinical trial. Osteoarthr Cartil. 2011;19(1):22–8.PubMedCrossRefGoogle Scholar
  127. 127.
    van Mechelen W, Hlobil H, Kemper H. Incidence, severity, aetiology and prevention of sports injuries. A review of concepts. Sports Med. 1992;14(2):82–99.PubMedCrossRefGoogle Scholar
  128. 128.
    Dhillon M, Bali K, Vasistha R. Immunohistological evaluation of proprioceptive potential of the residual stump of injured anterior cruciate ligaments [ACL]. Int Orthop. 2010;34(5):737–41.PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Schmidt RA, Lee T. Motor control and learning: a behavioural emphasis. 5th ed. Champaign, IL: Human Kinetics; 2011.Google Scholar
  130. 130.
    Borsa P, Lephart S, Irrgang J, Safran M, Fu F. The effects of joint position and direction of joint motion on proprioceptive sensibility in anterior cruciate ligament-deficient athletes. Am J Sports Med. 1997;25(3):336–40.PubMedCrossRefGoogle Scholar
  131. 131.
    Willems T, Witvrouw E, Verstuyft J, Vaes P, De Clercq D. Proprioception and muscle strength in subjects with a history of ankle sprains and chronic instability. J Athl Train. 2002;37(4):487–93.PubMedCentralPubMedGoogle Scholar
  132. 132.
    Ge W, Khalsa PS. Encoding of compressive stress during indentation by slowly adapting type I mechanoreceptors in rat hairy skin. J Neurophysiol. 2002;87:1686–93.PubMedCrossRefGoogle Scholar
  133. 133.
    Gerald FG. Mechanoreceptive/mechanosensitive visceral receptors. Encyclopedia of Pain; 2013. pp. 1808–10.Google Scholar
  134. 134.
    Sato K, Li Y, Foster W, Fukushima K, Badlani N, Adachi N, Usas A, FH F, Huard J. Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle Nerve. 2003;28:365–72.PubMedCrossRefGoogle Scholar
  135. 135.
    Graven-Nielsen T, Mense S. The peripheral apparatus of muscle pain: evidence from animal and human studies. Clin J Pain. 2001;17:2–10.PubMedCrossRefGoogle Scholar
  136. 136.
    Crane JD, Ogborn D, Cupido C, Melov S, Hubbard A, Bourgeois JM, Tarnopolsky MA. Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci Transl Med. 2012;4:119ra13.PubMedCrossRefGoogle Scholar
  137. 137.
    Holey LA, Dixon J. Connective tissue manipulation: a review of theory and clinical evidence. J Bodyw Mov Ther. 2013;18:112–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Holey LA, Dixon J, Selfe J. An exploratory thermographic investigation of the effects of connective tissue massage on autonomic function. J Manip Physiol Ther. 2011;34:457–62.CrossRefGoogle Scholar
  139. 139.
    Gifford J, Gifford L. Chapter 14: Connective tissue massage. In: Wells PE, Frampton V, Bowsher D, editors. Pain: management and control in physiotherapy. London: Heinemann Medical; 1994.Google Scholar
  140. 140.
    Yüksel I, Akbayrak T, Tuğay N, Çıtak-Karakaya I, Demirtürk F, Ekici G. Masaj teknikleri. In: Yüksel I, Akbayrak T, editors. Klasik masaj teknikleri, Konnektif doku masajı. Ankara: Alp Publishers; 2007. [15–50/294–295].Google Scholar
  141. 141.
    Bakar Y, Sertel M, Öztürk A, Tütün Yümin E, Tatarli N, Ankarali H. Short term effects of classic massage compared to connective tissue massage on pressure pain threshold and muscle relaxation response in women with chronic neck pain: a preliminary study. J Manip Physiol Ther. 2014;37(6):415–21.CrossRefGoogle Scholar
  142. 142.
    Williams PE, Goldspink G. Connective tissue changes in immobilised muscle. J Anat. 1984;138(Pt 2):343–50.PubMedCentralPubMedGoogle Scholar
  143. 143.
    Langevin HM, Sherman KJ. Pathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms. Med Hypotheses. 2007;68:74–80.PubMedCrossRefGoogle Scholar
  144. 144.
    Kase K, Wallis J, Kase T. Clinical therapeutic application of the kinesio taping method. Tokyo: Ken Ikai Co Ltd; 2003.Google Scholar
  145. 145.
    Cools AM, Witvrouw EE, Danneels LA, Cambier DC. Does taping influence electromyographic muscle activity in the scapular rotators in healthy shoulders? Man Ther. 2002;7:154–62.PubMedCrossRefGoogle Scholar
  146. 146.
    Slupik A, Dwornik M, Bialoszewski D, Zych E. Effect of Kinesio taping on bioelectrical activity of vastus medialis muscle. Preliminary report. Ortop Traumatol Rehabil. 2007;9:644–51.PubMedGoogle Scholar
  147. 147.
    Chen CY, Lou MY. Effects of the application of Kinesio-tape and traditional tape on motor perception. Br J Sports Med. 2008;42:513–4.Google Scholar
  148. 148.
    Fu TC, Wong AM, Pei YC, Wu KP, Chou SW, Lin YC. Effect of Kinesio taping on muscle strength in athletes-a pilot study. J Sci Med Sport. 2008;11:198–201.PubMedCrossRefGoogle Scholar
  149. 149.
    Halseth T, McChesney J, DeBeliso M, Vaughn R, Lien J. The effect of Kinesio taping on proprioception at the ankle. J Sports Sci Med. 2004;3:1–7.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Tobin S, Robinson G. The effect of McConnell’s vastus lateralis inhibition taping tecnhique on vastus lateralis and vastus medialis obiquus activity. Physiotherapy. 2000;86:173–83.CrossRefGoogle Scholar
  151. 151.
    Winter JA, Allen TJ, Proske U. Muscle spindle signals with the sense of effort to indicate limb position. J Physiol. 2005;568:1035–46.PubMedCentralPubMedCrossRefGoogle Scholar
  152. 152.
    Murray HM, Husk LJ. Effect of Kinesio taping on proprioception in the ankle and in the knee. J Orthop Sports Phys Ther. 2001;31:A-37.Google Scholar
  153. 153.
    Chang HY, Wei SH. The influence of proprioception funciton on shoulder internal and external rotators’ fatigue. J Phys Educ Higher Educ. 1999;1:85–96.Google Scholar
  154. 154.
    Sterner RL, Pincivero DM, Lephart SM. The effects of muscular fatigue on shoulder proprioception. Clin J Sport Med. 1998;8:96–101.PubMedCrossRefGoogle Scholar
  155. 155.
    Chang HY, Chou KY, Lin JJ, Lin CF, Wang CH. Immediate effect of forearm Kinesio taping on maximal grip strength and force sense in healthy collegiate athletes. Phys Ther Sport. 2010;11:122–7.PubMedCrossRefGoogle Scholar
  156. 156.
    Yoshida A, Kahanov L. The effect of Kinesio taping on lower trunk range of motion. Res Sports Med. 2007;15:103–12.PubMedCrossRefGoogle Scholar
  157. 157.
    Paoloni M, Bernetti A, Fratocchi G, Mangone M, Parrinello L, Del Pilar Cooper M. Kinesio taping applied to lumbar muscles influences clinical and electromyographic characteristics in chronic low back pain patients. Eur J Phys Rehabil Med. 2011;47:237–44.PubMedGoogle Scholar
  158. 158.
    Greig AM, Bennell KL, Briggs AM, Hodges PW. Postural taping decreases thoracic kyphosis but does not influence trunk muscle electromyographic activity or balance in women with osteoporosis. Man Ther. 2008;13:249–57.PubMedCrossRefGoogle Scholar
  159. 159.
    Hwang-Bo G, Lee JH. Effects of Kinesio taping in a physical therapist with acute low back pain due to patient handling: a case report. Int J Occup Med Environ Health. 2011;24:320–3.PubMedCrossRefGoogle Scholar
  160. 160.
    Schomacher J, Falla D. Function and structure of the deep cervical extensor muscles in patients with neck pain. Man Ther. 2013;18(5):360–6.PubMedCrossRefGoogle Scholar
  161. 161.
    Elliott JM, Jull G, Noteboom JT, Darnell R, Galloway G, Gibbon WW. Fatty infiltration in the cervical extensor muscles in persistent whiplash-associated disorders: a magnetic resonance imaging analysis. Spine. 2006;31:847–55.CrossRefGoogle Scholar
  162. 162.
    Elliott JM, Jull G, Noteboom JT, Galloway G. MRI study of the cross-sectional area for the cervical extensor musculature in patients with persistent whiplash associated disorders [WAD]. Man Ther. 2008;13:258–65.PubMedCrossRefGoogle Scholar
  163. 163.
    Cools AM, Dewitte V, Lanszweert F, Notebaert D, Roets A, Soetens B. Rehabilitation of scapular muscle balance: which exercises to prescribe? Am J Sports Med. 2007;35:1744–51.PubMedCrossRefGoogle Scholar
  164. 164.
    Petersen SM, Wyatt SN. Lower trapezius muscle strength in individuals with unilateral neck pain. J Orthop Sports Phys Ther. 2011;41(4):260–5.PubMedCrossRefGoogle Scholar
  165. 165.
    Kibler WB, McMullen J. Scapular dyskinesis and its relation to shoulder pain. J Am Acad Orthop Surg. 2003;11:142–51.PubMedCrossRefGoogle Scholar
  166. 166.
    Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80:276–91.PubMedGoogle Scholar
  167. 167.
    Kendall FP, McCreary EK, Provance PG, Rodgers MM, Romani WA. Muscles: testing and function with posture and pain. Baltimore: Williams & Wilkins; 2005.Google Scholar
  168. 168.
    Van Dillen LR, McDonell MK, Susco TM, Sahrmann SA. The immediate effect of passive scapular elevation on symptoms with active neck rotation in patients with neck pain. Clin J Pain. 2007;23(8):641–7.PubMedCrossRefGoogle Scholar
  169. 169.
    McDonnell MK, Sahrmann SA, Van Dillen L. A specific exercise program and modification of postural alignment for treatment of cervicogenic 68 headache: a case report. J Orthop Sports Phys Ther. 2005;35(1):3–15.PubMedCrossRefGoogle Scholar
  170. 170.
    Gandevia SC, McCloskey DI, Burke D. Kinesthetic signals and muscle contraction. Trends Neurosci. 1992;15(2):62–5.PubMedCrossRefGoogle Scholar
  171. 171.
    Hodges PW, Moseley GL. Pain and motor control of the lumbopelvic region: effect and possible mechanisms. J Electromyogr Kinesiol. 2003;13(4):361–70.PubMedCrossRefGoogle Scholar
  172. 172.
    Aarseth LM, Suprak DN, Chalmers GR, Lyon L, Dahlquist DT. Kinesio tape and shoulder-joint position sense. J Athl Train. 2015;50(8):785–91.PubMedCentralPubMedCrossRefGoogle Scholar
  173. 173.
    Hsu YH, Chen WY, Lin HC, Wang WT, Shih YF. The effects of taping on scapular kinematics and muscle performance in baseball players with shoulder impingement syndrome. J Electromyogr Kinesiol. 2009;19(6):1092–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Khadilkar A, Odebiyi DO, Brosseau L. Transcutaneous electrical nerve stimulation [TENS] versus placebo for chronic low-back pain. Cochrane Database Syst Rev. 2008;4:CD003008.Google Scholar
  175. 175.
    Adamczyk A, Kiebzak W, Wilk-Franczuk M. Effectiveness of holistic physiotherapy for low back pain. Ortop Traumatol Rehabil. 2009;11:562–76.PubMedGoogle Scholar
  176. 176.
    Ansari NN, Ebadi S, Talebian S. A randomized, single blind placebo controlled clinical trial on the effect of continuous ultrasound on low back pain. Electromyogr Clin Neurophysiol. 2006;46:329–36.PubMedGoogle Scholar
  177. 177.
    Bunzli S, Gillham D, Esterman A. Physiotherapy-provided operant conditioning in the management of low back pain disability: a systematic review. Physiother Res Int. 2011;16:4–19.PubMedCrossRefGoogle Scholar
  178. 178.
    French SD, Cameron M, Walker BF. A cochrane review of superficial heat or cold for low back pain. Spine (Phila Pa 1976). 2016;31:998–1006.CrossRefGoogle Scholar
  179. 179.
    Kroeling P, Gross A, Graham N. Electrotherapy for neck pain. Cochrane Database Syst Rev. 2013;8:CD004251.Google Scholar
  180. 180.
    Krekoukiasa G, Gelalisa ID, Xenakisa T, Gioftsosb G, Dimitriadisc Z, Sakellarib V. Spinal mobilization vs conventional physiotherapy in the management of chronic low back pain due to spinal disk degeneration: a randomized controlled trial. J Man Manip Ther. 2017;25(2):66–73.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiotherapy and Rehabilitation, Faculty of Health SciencesUskudar UniversityİstanbulTurkey
  2. 2.Department of Physiotherapy and Rehabilitation, Faculty of Health SciencesHacettepe UniversityAnkaraTurkey

Personalised recommendations