Advertisement

Proprioception After Elbow Injury, Surgery, and Rehabilitation

  • Tüzün Firat
  • Özgün Uysal
Chapter

Abstract

Upper extremities do fine motor activities on a daily basis with high precision. In daily life, many activities such as writing, using computer, eating and dressing are being done repetitively. In order to do these activities function of elbow joint leads to change in hand position with flexion, extension, pronation and supination movements. To achieve this much preciseness in movement, proprioception is the key element. Even though elbow proprioception is not investigated comprehensively, it is a crucial element in rehabilitation of the whole arm.

Injuries to the elbow, affect structural elements providing integrity including proprioceptive afferents. Depending on injury severity, treatment options may include surgery or conservative treatment. In conservative approach it is important to know the proprioception concepts and proprioceptive structures besides elbow anatomy and mechanics. In rehabilitation phase, therapists should be aware of proprioceptive loss. In this chapter, elbow proprioception concept involving assessment methods and applications is discussed.

Keywords

Kinaesthesia Joint position sense Assessment 

References

  1. 1.
    Neumann DA. Kinesiology of the musculoskeletal system-E-book: foundations for rehabilitation. London: Elsevier Health Sciences; 2013.Google Scholar
  2. 2.
    Werner FW, An KN. Biomechanics of the elbow and forearm. Hand Clin. 1994;10(3):357–73.PubMedGoogle Scholar
  3. 3.
    Cooper JE, Shwedyk E, Quanbury AO, Miller J, Hildebrand D. Elbow joint restriction: effect on functional upper limb motion during performance of three feeding activities. Arch Phys Med Rehabil. 1993;74(8):805–9.  https://doi.org/10.1016/0003-9993(93)90005-U.CrossRefPubMedGoogle Scholar
  4. 4.
    Brukner P. Brukner & Khan's clinical sports medicine. North Ryde: McGraw-Hill; 2012.Google Scholar
  5. 5.
    Skirven TM, Osterman AL, Fedorczyk J, Amadio PC. Rehabilitation of the hand and upper extremity, 2-volume set E-book: expert consult. London: Elsevier Health Sciences; 2011.Google Scholar
  6. 6.
    Shumway-Cook A, Woollacott MH. Motor control: theory and practical applications. Philadelphia: Lippincott Williams & Wilkins; 2001.Google Scholar
  7. 7.
    Ghez C, Krakauer J. Voluntary movement. Princ Neural Sci. 1991;3:609–25.Google Scholar
  8. 8.
    Regan WD, Korinek SL, Morrey BF, An KN. Biomechanical study of ligaments around the elbow joint. Clin Orthop Relat Res. 1991;271:170–9.Google Scholar
  9. 9.
    Dugas JR, Ostrander RV, Cain EL, Kingsley D, Andrews JR. Anatomy of the anterior bundle of the ulnar collateral ligament. J Shoulder Elb Surg. 2007;16(5):657–60.  https://doi.org/10.1016/j.jse.2006.11.009.CrossRefGoogle Scholar
  10. 10.
    Callaway GH, Field LD, Deng XH, Torzilli PA, O'Brien SJ, Altchek DW, et al. Biomechanical evaluation of the medial collateral ligament of the elbow. J Bone Joint Surg Am. 1997;79(8):1223–31.CrossRefPubMedGoogle Scholar
  11. 11.
    Olsen BS, Søjbjerg JO, Dalstra M, Sneppen O. Kinematics of the lateral ligamentous constraints of the elbow joint. J Shoulder Elb Surg. 1996;5(5):333–41.  https://doi.org/10.1016/S1058-2746(96)80063-2.CrossRefGoogle Scholar
  12. 12.
    Goodwin GM, McCloskey DI, Matthews PB. Proprioceptive illusions induced by muscle vibration: contribution by muscle spindles to perception? Science (New York, NY). 1972;175(4028):1382–4.CrossRefGoogle Scholar
  13. 13.
    Burke D, Hagbarth KE, Lofstedt L, Wallin BG. The responses of human muscle spindle endings to vibration of non-contracting muscles. J Physiol. 1976;261(3):673–93.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Roll JP, Vedel JP. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res. 1982;47(2):177–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Ferrell WR, Gandevia SC, McCloskey DI. The role of joint receptors in human kinaesthesia when intramuscular receptors cannot contribute. J Physiol. 1987;386:63–71.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Edin BB. Cutaneous afferents provide information about knee joint movements in humans. J Physiol. 2001;531(Pt 1):289–97.  https://doi.org/10.1111/j.1469-7793.2001.0289j.x. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Edin BB, Abbs JH. Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of the human hand. J Neurophysiol. 1991;65(3):657–70.CrossRefPubMedGoogle Scholar
  18. 18.
    Martin JH, Jessell TM. Modality coding in the somatic sensory system. Princ Neural Sci. 1991;3:341–52.Google Scholar
  19. 19.
    Yahia LH, Rhalmi S, Newman N, Isler M. Sensory innervation of human thoracolumbar fascia. Acta Orthop Scand. 1992;63(2):195–7.  https://doi.org/10.3109/17453679209154822.CrossRefPubMedGoogle Scholar
  20. 20.
    Rothwell JC. Control of human voluntary movement. Netherlands: Springer Science & Business Media; 2012.Google Scholar
  21. 21.
    Röijezon U, Clark NC, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 1: basic science and principles of assessment and clinical interventions. Man Ther. 2015;20(3):368–77.CrossRefPubMedGoogle Scholar
  22. 22.
    Peck D, Buxton DF, Nitz A. A comparison of spindle concentrations in large and small muscles acting in parallel combinations. J Morphol. 1984;180(3):243–52.  https://doi.org/10.1002/jmor.1051800307.CrossRefPubMedGoogle Scholar
  23. 23.
    Kulkarni V, Chandy M, Babu K. Quantitative study of muscle spindles in suboccipital muscles of human foetuses. Neurol India. 2001;49(4):355.PubMedGoogle Scholar
  24. 24.
    Banks RW. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles. J Anat. 2006;208(6):753–68.  https://doi.org/10.1111/j.1469-7580.2006.00558.x.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gordon J, Ghez C. Muscle receptors and spinal reflexes: the stretch reflex. Princ Neural Sci. 1991;3:565–80.Google Scholar
  26. 26.
    Proske U, Gandevia SC. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol Rev. 2012;92(4):1651–97.  https://doi.org/10.1152/physrev.00048.2011.CrossRefPubMedGoogle Scholar
  27. 27.
    Petrie S, Collins JG, Solomonow M, Wink C, Chuinard R, D'Ambrosia R. Mechanoreceptors in the human elbow ligaments. J Hand Surg Am. 1998;23(3):512–8.  https://doi.org/10.1016/s0363-5023(05)80470-8.CrossRefPubMedGoogle Scholar
  28. 28.
    Burgess PR, Clark FJ. Characteristics of knee joint receptors in the cat. J Physiol. 1969;203(2):317–35.  https://doi.org/10.1113/jphysiol.1969.sp008866.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sojka P, Johansson H, Sjölander P, Lorentzon R, Djupsjöbacka M. Fusimotor neurones can be reflexy influenced by activity in receptor afferents from the posterior cruciate ligament. Brain Res. 1989;483(1):177–83.  https://doi.org/10.1016/0006-8993(89)90051-6.CrossRefPubMedGoogle Scholar
  30. 30.
    Johansson H. The anterior cruciate ligament: a sensor action on the γ-muscle-spindle systems muscles around the knee joints. Neuro-Orthopedics. 1990;9:1–23.Google Scholar
  31. 31.
    Needle AR, Swanik CB, Farquhar WB, Thomas SJ, Rose WC, Kaminski TW. Muscle spindle traffic in functionally unstable ankles during ligamentous stress. J Athl Train. 2013;48(2):192–202.  https://doi.org/10.4085/1062-6050-48.1.09.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cohen MS, Bruno RJ. The collateral ligaments of the elbow: anatomy and clinical correlation. Clin Orthop Relat Res. 2001;383:123–30.CrossRefGoogle Scholar
  33. 33.
    Sabick MB, Torry MR, Lawton RL, Hawkins RJ. Valgus torque in youth baseball pitchers: a biomechanical study. J Shoulder Elb Surg. 2004;13(3):349–55.  https://doi.org/10.1016/s1058274604000308. CrossRefGoogle Scholar
  34. 34.
    Williams RJ 3rd, Urquhart ER, Altchek DW. Medial collateral ligament tears in the throwing athlete. Instr Course Lect. 2004;53:579–86.PubMedGoogle Scholar
  35. 35.
    Dunning CE, Zarzour ZD, Patterson SD, Johnson JA, King GJ. Ligamentous stabilizers against posterolateral rotatory instability of the elbow. J Bone Joint Surg Am. 2001;83-a(12):1823–8.CrossRefPubMedGoogle Scholar
  36. 36.
    O'Driscoll SW, Jupiter JB, King GJW, Hotchkiss RN, Morrey BF. The unstable elbow. JBJS. 2000;82(5):724.CrossRefGoogle Scholar
  37. 37.
    Freivalds A. Biomechanics of the upper limbs: mechanics, modeling and musculoskeletal injuries. London: CRC press; 2011.Google Scholar
  38. 38.
    Snijders CJ, Volkers A, Mechelse K, Vleeming A. Provocation of epicondylalgia lateralis (tennis elbow) by power grip or pinching. Med Sci Sports Exerc. 1987;19(5):518–23.CrossRefPubMedGoogle Scholar
  39. 39.
    Hong Y, Bartlett R. Routledge handbook of biomechanics and human movement science. Londres: Routledge; 2008.Google Scholar
  40. 40.
    Dhillon MS, Bali K, Vasistha RK. Immunohistological evaluation of proprioceptive potential of the residual stump of injured anterior cruciate ligaments (ACL). Int Orthop. 2010;34(5):737–41.  https://doi.org/10.1007/s00264-009-0948-1.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bali K, Dhillon MS, Vasistha RK, Kakkar N, Chana R, Prabhakar S. Efficacy of immunohistological methods in detecting functionally viable mechanoreceptors in the remnant stumps of injured anterior cruciate ligaments and its clinical importance. Knee Surg Sports Traumatol Arthrosc. 2012;20(1):75–80.  https://doi.org/10.1007/s00167-011-1526-9.CrossRefPubMedGoogle Scholar
  42. 42.
    Smith RL, Brunolli J. Shoulder kinesthesia after anterior glenohumeral joint dislocation. Phys Ther. 1989;69(2):106–12.  https://doi.org/10.1093/ptj/69.2.106.CrossRefPubMedGoogle Scholar
  43. 43.
    Borsa PA, Lephart SM, Irrgang JJ, Safran MR, Fu FH. The effects of joint position and direction of joint motion on proprioceptive sensibility in anterior cruciate ligament-deficient athletes. Am J Sports Med. 1997;25(3):336–40.  https://doi.org/10.1177/036354659702500311.CrossRefPubMedGoogle Scholar
  44. 44.
    Willems T, Witvrouw E, Verstuyft J, Vaes P, De Clercq D. Proprioception and muscle strength in subjects with a history of ankle sprains and chronic instability. J Athl Train. 2002;37(4):487–93.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Fusaro I, Orsini S, Kantar SS, Sforza T, Benedetti M, Bettelli G, et al. Elbow rehabilitation in traumatic pathology. Musculoskelet Surg. 2014;98(1):95–102.CrossRefPubMedGoogle Scholar
  46. 46.
    James RY, Throckmorton TW, Bauer RM, Watson JT, Weikert DR. Management of acute complex instability of the elbow with hinged external fixation. J Shoulder Elb Surg. 2007;16(1):60–7.CrossRefGoogle Scholar
  47. 47.
    Ettinger LR, Shapiro M, Karduna A. Subacromial Anesthetics increase proprioceptive deficit in the shoulder and elbow in patients with subacromial impingement syndrome. Clin Med Insights Arthritis Musculoskelet Disord. 2017;10:1179544117713196.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Safran MR, Caldwell GL Jr, Fu FH. Proprioception considerations in surgery. J Sport Rehabil. 1994;3(1):105–15.CrossRefGoogle Scholar
  49. 49.
    Riemann BL, Myers JB, Lephart SM. Sensorimotor system measurement techniques. J Athl Train. 2002;37(1):85–98.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Clark NC, Röijezon U, Treleaven J. Proprioception in musculoskeletal rehabilitation. Part 2: clinical assessment and intervention. Man Ther. 2015;20(3):378–87.  https://doi.org/10.1016/j.math.2015.01.009.CrossRefPubMedGoogle Scholar
  51. 51.
    Lephart SM, Warner JJP, Borsa PA, Fu FH. Proprioception of the shoulder joint in healthy, unstable, and surgically repaired shoulders. J Shoulder Elb Surg. 1994;3(6):371–80.  https://doi.org/10.1016/S1058-2746(09)80022-0.CrossRefGoogle Scholar
  52. 52.
    Benjaminse A, Sell TC, Abt JP, House AJ, Lephart SM. Reliability and precision of hip proprioception methods in healthy individuals. Clin J Sport Med. 2009;19(6):457–63.  https://doi.org/10.1097/JSM.0b013e3181bcb155.CrossRefPubMedGoogle Scholar
  53. 53.
    Waddington G, Adams R, Jones A. Wobble board (ankle disc) training effects on the discrimination of inversion movements. Aust J Physiother. 1999;45(2):95–101.  https://doi.org/10.1016/S0004-9514(14)60341-X.CrossRefPubMedGoogle Scholar
  54. 54.
    Waddington G, Seward H, Wrigley T, Lacey N, Adams R. Comparing wobble board and jump-landing training effects on knee and ankle movement discrimination. J Sci Med Sport. 2000;3(4):449–59.  https://doi.org/10.1016/S1440-2440(00)80010-9.CrossRefPubMedGoogle Scholar
  55. 55.
    Kristjansson E, Oddsdottir GL. “The fly”: a new clinical assessment and treatment method for deficits of movement control in the cervical spine: reliability and validity. Spine. 2010;35(23):E1298–E305.  https://doi.org/10.1097/BRS.0b013e3181e7fc0a. CrossRefPubMedGoogle Scholar
  56. 56.
    Dover G, Powers ME. Reliability of joint position sense and force-reproduction measures during internal and external rotation of the shoulder. J Athl Train. 2003;38(4):304–10.PubMedPubMedCentralGoogle Scholar
  57. 57.
    O'Leary SP, Vicenzino BT, Jull GA. A new method of isometric dynamometry for the craniocervical flexor muscles. Phys Ther. 2005;85(6):556–64.PubMedGoogle Scholar
  58. 58.
    Schmidt RA, Lee TD. Motor control and learning: a behavioral emphasis. Champaign, IL: Human Kinetics; 2005.Google Scholar
  59. 59.
    Nagai T, Sell TC, Abt JP, Lephart SM. Reliability, precision, and gender differences in knee internal/external rotation proprioception measurements. Phys Ther Sport. 2012;13(4):233–7.  https://doi.org/10.1016/j.ptsp.2011.11.004.CrossRefPubMedGoogle Scholar
  60. 60.
    Preuss R, Grenier S, McGill S. The effect of test position on lumbar spine position sense. J Orthop Sports Phys Ther. 2003;33(2):73–8.  https://doi.org/10.2519/jospt.2003.33.2.73.CrossRefPubMedGoogle Scholar
  61. 61.
    Suprak DN, Osternig LR, van Donkelaar P, Karduna AR. Shoulder joint position sense improves with external load. J Mot Behav. 2007;39(6):517–25.  https://doi.org/10.3200/JMBR.39.6.517-525.CrossRefPubMedGoogle Scholar
  62. 62.
    Goble DJ. Proprioceptive acuity assessment via joint position matching: from basic science to general practice. Phys Ther. 2010;90(8):1176–84.  https://doi.org/10.2522/ptj.20090399.CrossRefPubMedGoogle Scholar
  63. 63.
    Lakie M, Walsh EG, Wright GW. Resonance at the wrist demonstrated by the use of a torque motor: an instrumental analysis of muscle tone in man. J Physiol. 1984;353(1):265–85.  https://doi.org/10.1113/jphysiol.1984.sp015335.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Boyer MI. Green's operative hand surgery. J Hand Surg. 1999;24(3):649.CrossRefGoogle Scholar
  65. 65.
    Kaltenborn FM, Evjenth O. Manual mobilisation of the extremity joints: basic examination and treatment techniques. Oslo Norway: O.N. Bokenhandel; 1989.Google Scholar
  66. 66.
    Chinchalkar SJ, Szekeres M. Rehabilitation of elbow trauma. Hand Clin. 2004;20(4):363–74.  https://doi.org/10.1016/j.hcl.2004.06.004.CrossRefPubMedGoogle Scholar
  67. 67.
    Ramachandran VS, Altschuler EL. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain. 2009;132(7):1693–710.CrossRefPubMedGoogle Scholar
  68. 68.
    Wilk KE, Arrigo C, Andrews JR. Rehabilitation of the elbow in the throwing athlete. J Orthop Sports Phys Ther. 1993;17(6):305–17.CrossRefPubMedGoogle Scholar
  69. 69.
    Wilk KE, Arrigo CA, Andrews JR, Azar FM. Rehabilitation following elbow surgery in the throwing athlete. Oper Tech Sports Med. 1996;4(2):114–32.CrossRefGoogle Scholar
  70. 70.
    Wilk KE, Voight ML, Keirns MA, Gambetta V, Andrews JR, Dillman CJ. Stretch-shortening drills for the upper extremities: theory and clinical application. J Orthop Sports Phys Ther. 1993;17(5):225–39.  https://doi.org/10.2519/jospt.1993.17.5.225. CrossRefPubMedGoogle Scholar
  71. 71.
    Huang Q, Li D, Yokotsuka N, Zhang Y, Ubukata H, Huo M, et al. The intervention effects of different treatment for chronic low back pain as assessed by the cross-sectional area of the multifidus muscle. J Phys Ther Sci. 2013;25(7):811–3.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Huo M, Maruyama H, Kaneko T, Naito D, Koiso Y. The immediate effect of lumbar spine patterns of neuromuscular joint facilitation in young amateur baseball players. J Phys Ther Sci. 2013;25(12):1523–4.CrossRefPubMedGoogle Scholar
  73. 73.
    Huang Q, Wang K-Y, Yu L, Zhou Y, Gu R, Cui Y, et al. Evaluation of the effects of different treatments for the elbow joint using joint proprioception and surface electromyography. J Phys Ther Sci. 2015;27(12):3907–9.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Khabie V, Schwartz MC, Rokito AS, Gallagher MA, Cuomo F, Zuckerman JD. The effect of intraarticular anesthesia and elastic bandage on elbow proprioception. J Shoulder Elb Surg. 1998;7(5):501–4.CrossRefGoogle Scholar
  75. 75.
    Bae Y-S. Effects of spiral taping on proprioception in subjects with unilateral functional ankle instability. J Phys Ther Sci. 2017;29(1):106–8.  https://doi.org/10.1589/jpts.29.106. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Long Z, Wang R, Han J, Waddington G, Adams R, Anson J. Optimizing ankle performance when taped: effects of kinesiology and athletic taping on proprioception in full weight-bearing stance. J Sci Med Sport. 2017;20(3):236–40.CrossRefPubMedGoogle Scholar
  77. 77.
    Haavik H, Murphy B. The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control. J Electromyogr Kinesiol. 2012;22(5):768–76.  https://doi.org/10.1016/j.jelekin.2012.02.012.CrossRefPubMedGoogle Scholar
  78. 78.
    Barrett D, Cobb A, Bentley G. Joint proprioception in normal, osteoarthritic and replaced knees. J Bone Joint Surg Br. 1991;73(1):53–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Health Sciences, Department of Physiotherapy and RehabilitationHacettepe UniversityAnkaraTurkey

Personalised recommendations